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ABSTRACT 

Reduction of computation effort in '•ater resource opt imi.:at .ion proh l ems can he made through~ modification of 
t he optlmi:ation technique instead of l i miting development of t he syst em model s . Constllerations are pr~scnt~d 
heroin 1~hich lead to the dt.Jvelopment of a heuristic appli cat ion of detcrminl~tic optimi~ation techniqu<'s. Tht.J 
modification enahles re~~tion of computation to take p l ace whi l e achieving results t hat approximat e the optimum. 
The modi fied application of dynamic programming is made for a s i ngle reservoir system problem , illustration t he 
technique and the achievement of ncar optimum performance. 

Stochastic opt imi ~at ion techniques that are used in l>ater resource systems enRi ncering are prt-s<'nted. A 
heuristic alternate stochastic optimi:ation technique is then described and suggl!sted as an improv..-ment. Fea5ihlt~ 
usc of this altentate is possible since ohservations on planning hori:ons are employed in computation reduction. 
For a single reservoir system, the techniques arc applied and compared. Computation costs are reduced :1nd system 
p~rformnnce is improved with the use of the a lternate . 

Several studies arc out l ined which il lustrate changes i n tht- t echnique result s with change~ i n the probll'm 
formulat ion. 'J'h() techniques 1•ork <•ell f or all problem voriations cons lclct·ed hor() and i.nJkate tht! rcch11iquos 
;:orform best for real istil.: problem fot"mulations . 

Lv 



CHAPTER I 
INTRODUCTION 

Much worL haR been don~ in tha post in developing 
theory and methodologies t hat arc necessary for analy­
: ing l>ater resource problems. Of concern here, is the 
en$!ineering application of various methods to 5uch 
problems . In the design of ,;ater resource proJects, 
the desire to achieve a "good" or "best" project has 
been expressed in many ways. Various researchers (28, 
35,36,39) have 1;orked 1<ith the practical aspects of de­
signing a water resource project of optimum si:e using 
specified operating rules. In the optimum design of a 
water resource project, determination of the optimum 
configuration a11d the optimum oper:tt i ng rul cs of the 
project is necessary for both the design and the !luhse­
quent use of the project (~,21 ,40) . Other r esearchers 
(10,15,31) have concerned themselves ~ith the aspects 
of dcsiJ!ning a water resource project of :>ptimum sj:e 
and configuration ,,·hich operates in an optimum manner. 
Roefs (,10) hns revie~>cd the desi gn procedur e fvr f inding 
the optimum si:e anti configuro.tion and t he optimum op­
croting rule~ for a ~<atcr resource project. According 
to both Roefs (JO) , Bcord (2) and others (21), the 
study of a sy5tcm of a g1vcn si:e and conf1guration , to 
determine i t s opt imum operating rules, i s a component 
(most times) of the above Jcsign procc~ure. This sub­
problem, of finding the optimum operation for :1 water 
resource system in a practical manner,hasbeenofmajor 
conct!rn in recent years and is the subject of this stuJy. 

As pointed out by Labadie (24), "there are essen­
tial ly three approaches to the ratjonal planning of 
future control policies: deterministic, stochastic and 
adaptive." Although there ar e still some problems 
solved deterministicall y (3,9,16), sometimes only for 
purposes of i llustration of a technique (12,18,33), 
most probl em solut i ons today arc in the stochast i c 
rea lm (1, 10,15,22,23,26,27,41,47,48). In the adaptive 
approach, effort is made to incorporate new information 
into the decision problem :ts it bccomc5 available. For 
exampl e , in t he monthl y operat ion of 3 reservoir , moru 
data on i nfloh'S into the reservoir is avai !abl e each 
month. This adtlit ional data can then be used in the 
determination of future reservoir operation. Some 
~ork has been done using (or at lcost concerned with) 
tho adaptive appr oach (17,20,:?4). Close l y r0 l:tted to 
the aliaptive approach i~ work that has been uonu in the· 
field of fon·~u~t usc and its effect~ on the determina­
tion of the opttmum operation of a system (11 ,43.48) . 
The purpose of thi~ study is to develop heuristi~ 
methodologies (which arc adaptive) for the determina ­
tion of thr wut er resource ~y~tcms optimum operation. 

The definition of the objective in an optimi~ation 
study has been different in various studies (40). Some 
researchers (:?b,48) have optimized operations by mini­
ml~tng losses assocjatetl with fai l ing to meet target 
demands. Other~ CD . l~, l 6) have optimized by mnximizi ng 
the net total benefit (or minimi!ing the net total 
cost) reali~ed from system outputs. Sti 11 other s 
(23,26 , 27,29) have optimizcdbymaximiz.jng t he expected 
value of the net t otal benefit for the system. St ill 
others (24 , :?7,117) have optimi:ed by maxi111iz ing tlw 
cxpcct ell value of the net total benefit possible in the 
remaining stages of a system's operotion, determining 
the decision at each stage. In this study , the objec­
tive is to m~ximi:e t he ~ctual return (net total bene­
fit) for the syst er11 . From this point on , the net total 
benefit will bt• referred to as simpl y the total benefit. 

Within the v;r rio11~ llll" l lll"l " in u~l' t Ol.by arc 
certain di sadvantage~ (o11t I in,·.l in l:ln•r sections) 
which limit the ir app l i,·ahi l itl" and/ot· JT~tllt~. In 
this stud)' . applicationsnfoptirni:ation t<·<·hni4ues arc 
introduced t hat an• fn·l" of t hl'Sl' u i sadvantagt's , for 
many problems common t o tht· wat ,.,. n•:.onrn' fi C' l d. Other 
methods arc available 1dtit"h t"<':wlt i11 problem reduc· 
tion , simplification and 1pproximat ion. thcn•by al ­
lowing various oprimi:ation tl•chniqm•s to he appli ed 
to ohtain the optimum !IOiut ion for· the reduced problem 
(2, 40 , 43) . The mt'thotlo I ogy to be presented here will 
accept a smal l dev.i;rt ion from t hl' maxjmum total bene­
fit, to achieve r esults for mor~ complex and detailed 
problems than were othcrwi~t' possible with limited 
computational facilitie~. At the same time the meth­
odol ogv will allow for inclusion of more data as it 
becomes available in re~ l t i me . 

The methodology to be presented consists of two 
heuristic techniques: a modifieu application of de­
terministic opt1rn1 :ation techniques which achieves 
desir ed degrees of suboptimum performance without re ­
ducing the problem , and an alternativ~ stochastic op­
tlmnation techni4ue which does not havC' the Jisatlvan· 
tages of present stochastic optimi::ation techniques. 
The two techniques will be combined to provide an ef­
ficient method of e~timat ing optimum operations for a 
system. 

The problems of concern here are those which arc 
represented by discrete variables. Most optimization 
probl ems, both determi nistic and stochastic, use di s­
crete representation in practice (1 , 2,12 ,15,17 ,18. 21 . 
24,26 . 27,40,41,48). It is desired to develop methods 
which compete with existing methods in analyzing the 
same complex systems . Therefore, di screte representa­
tion is made part of all the following def ini tions. 
The writer is aware of the controversial prohlem of 
selecting discrete variables to represent continuous 
variables and of the loss of information which is con­
sequent. That problem is not treated in this study. 
The study presented herein deals with the problem so­
lutions after the d iscret i zation has already been made . 

As mentioned again later, this study is concerned 
with the deRign and/or operat i on of a wat er resource 
system assuming that thr s t ochastic hydrology is ado-
4Uatcly represented. For comments and stud ies where 
imperfect modelling of the stochastic hydrology affects 
the system dcsigr., sec (4,7,11,~4,44). 

The ti-'O heuristic developments for the determin­
istic and stochastic problems are presented respec­
tively. rirst, necessary definitions , theory and ap­
plication arc presented for tht' deterministic case . 
These r esul ts arc utili zed in the stochastic case. 
f'urther definitions, discussion, development and ap­
plication are presented for the stochastic case . Ob­
~ervations on how the techniques perform are presented 
in a study to find the adequacy of. the methods for 
various r eser voi r probl ems. Finally , suggest ions, 
conc lusions and a discussion are presented. 



CHAPTER II 

DETER~IDI ISTIC OPTl~I IZ.\TION 

Computer simulat ion has grown to p l ay a large part 
in the optimum planning and operation of water resource 
srstems . As planning :md operating needs for more 
complex systems gro1;, the demand on comput:lt ional fn­
ci lit ies wi 11 increase. There are compu·tation require­
ments associated with the application of optimi:ation 
techniques to system models. When those requirements 
exceed the faci l ities , the techniques cannot be applied. 
Instead, a limitation on the development of the system 
models has to be affected to make the solution feasible . 
Thus , a loss i n model r epresentation of the system is 
traded for computational feasibility. However, if a 
reduction in the computational requirements can be made 
by modifying the optimizati on technique, then the so­
lu tion may become feasihle without limitingthemodels. 
There arc numerous examples in water resources of prob­
lems lvhere reduction in computation was achieved t hrough 
modification of t he optimi :ntion technique (~5,40). 
For dynamic programming examples, see (1 3,18,32). The 
modifications in each case are particular t o the opt i ­
mization technique involved. 

There are considerations that would enable a mod­
ified a pplication of any optimization technique to 
various water resource problems , to reduce required 
computations without simplifying the problem. In addi ­
tion, these considerations also result in several 
specific advantages associated with particul ar opti~i­
:ation techniques. This chapter gives some theoretical 
insight into these considerations , some resulting mod­
ifications to be made to applications of optimization 
t echniques, an appl ic«tion to a typical problem and a 
discussion of advantages associated with different op­
timizati on t echniques . 

DEF INITIONS 

The System ModeZ - Consider a system (one or more 
reservoirs) operating over a period of time (the oper -

ation hol"izon1) of N stages. At each ataae, the system 
has inputs into it and outpuis from it which determine 
the state uf the system at that s t age. Part or all of 
the outputs arc uetermined as the system deoisiona at 
each stage . The system state may be a function of 
inputs, outputs, decisions and states at any stages 
previous to that stage. In the definitions here, the 
state at each stage may not be a function of any vari­
ables whose values occur in future stages. Thus . as the 
system operates there will be vectors of inputs, out­
puts, stat es a nd decisions occurring a t each stage. 
Over N stages, the systems operation will be ch;u·ac ­
terized by the matrices of inputs, outputs , stat~s and 
decisi ons 111hich occur . The system wil l he cons iJereJ 
to oper ate, on a stage by stage basis, hy ~oing through 
the following steps in order: i) at t he beRinnin~ of 
the jth time interval, the stage is j a nd t he st;lt c 
vector is sj, ii) the input vector, lj occurs imme-

diately after the beginning of the jth time interval, 
iii) the decision vector J . then occurs , llctcrmini ng 

J 
tho output vector, Oj and the new 

at the end of the j th time interval 
of the j •lth time interval . 

state vector ~j•l 

and the beginning 

The system must operate according to its inhel"elli 
vehavior (expressed by suitable models ) subject to its 
set of constraints and boundal"y condido11s. Some sys­
tems definitions (19) regard the input matrix as part 
of t he constraint set, but the above definition is most 
convenient for the purposes here. 

The Gptirnizati<m ?J:'obl .. m - System performance at 
each stage may be evaluated by assignment of a •aZ~·.:J 
function at each stage to t he decision, output, input 
and state vector;; which occur at that stage :1nd previous 
stages. For example, a reservoir operation at a stage 
might be judged in relation to the economic benefit 
real i~ed from irrigation. Such a benefit might uepend 
on the reservoir out flows and inflOI4S of the present 
and several past stages . In this presentation, such 
values are regarded as being funct ions of only t he 
present and past system state and decision vectors, 
past input and output vectors and past values them­
selves . Thus, at each stage, given all past conditions , 
the value at that stage is a function only of the pre­
sent stage decision. As the system operates over the 
operation hori:on, there will be a valwJ veatol" gener­
ated. The system performance over all N stages may 
be evaluated through the use of an oi:jec~ive j'.mcr;ion 
which assigns a single total value of system perfor­
mance to every possible value vector. The objective 
functions considered here (see (8,30 ,37)) are rest.ri..:t ed 
to those which are separable , i.e.: 

(1) 

and in which s
1 

is a monotonical l y nondecreas ing 

function of 

impl y (37) 
posed, \.e.: 

8., for every vN( · ). Thesetwoconuitions 

that the N st:1ge problem can be decem-

max S (v
1

(dl
1

; · ); ... ; v (d ;· l) " max e 1 t vi\1 (d~; · ); 
N N d 

J1, ... ,dN N 

ln the above 
function ;10d 

(2) 

c4uacions, 8 represents the objective 
vi ( ) represents the value function at 

the i t h stage. The uhove assumpti ons :1re not :Js r e­
~trictive ;~~ they ml~ht seem for practical ub jective 
functions whi..:h u:<u:JII)' involve a sum of terms. 

•;t· tlrrri.:;uLion menns the selection of a decision 
matrix (Jc~ i gnat,•d as an ••t•l ir•tWII J.,r:isi.;>n ma.t.ri.t) which 
rc:<ult ~ in a v;• luc• vector 1dth a highe!:lt (or lowest) 
total v:llue a ~ giv~·n by the objective function (as­
suming that a highest ur lo1~cst value exists). This 
~ct~·,·t ann is made throu):h tht: usc of a determi.11istic 
•r•t, n•11::,t· ;,,,, r.. ·. ·im .'· t ~o~ . Optimi:;~tion is constr:lined to 

n.nl y r hn~~· ;: t. : 't·f,. d~·~·i~ion matrices which result in 
... ~.., t ,•m ,;tat~· .111d <lutput matrices and operations l<hich 
"a ti ~r,· tlw H·~tl'm:< inlw n·nt ll~·havior :md set of con­
" t ra111r~ :11111 i,n, ,nda r )' , . .,,1d1 tinn s. 

The operation of a system i n practice m:.ay oft en <'Xt•' lhl on· r· 1 h~· ,J'i ,: in;.' I oi<"' l.''· ll p~·~·iod . For the. purposes 
here, the system is consider ed as operating only ov~·r 1t " ''l"'~':l tl <llllw~·,.:t~n atl•·r.~.t.ll~h the sys~emJsdc;-funct: 
Extensions of operation beyond the operation hori:nn .II"<' .ll:<n•·:·.,·.t Ill l hapt cr \ Ill the scctlon entnled. 
Genera~ Comments . 



An optimization of sys t em performance has meaning 
011Zy for a given input matrix. For different input 
matrices, an optimization will result in the selection 
of different optimum decision matrices anJ different 
max1mum total values. Tt is assumed here that a "tie­
breakins:" procedure exists within the optlmlZation 
process when more than one optimuo decision matrix 
gives the highest total value. Thus, the optimization 
procedure results in the specification of a unique 
optimum decision matrix for each input matrix . 

The First Stage Decisi011 as c Random 'lariabZe 
1ne above definitions and concepts may be r egar ded as 
follows. The system formulation, objective function. 
syst em value functions and deterministic opt1m1 ~ation 
technique operate as a vector valued function. The 
"domain" of this function is the set of all possible 
input matrices . For every element (input matrix) in 
this domain, the function assigns a unique " point " in 
its range . Each "point " is an optimum decision matrix 
of real numbers and the range of this funct i on is the 
set of optimum decision matrices. 

If only the first stage decision vector was de­
sired , an optimization could be performed, the first 
stage dcci sion vector noted and the rest of the optimum 
decision matrix disregarded . This opti~~ initial 
decision vector from an li stage optimization is real 
valued and is given uniquely according to the prior 
definition of optimization . Thus, t he determination of 
the optimum initial decision vector operates as a vector 
valued function also. 

The domain of input matrices may be regarded as a 
sample space. The time series structure of the inputs 
defines a probability measure assigned t o each element 
(inpu~ matrix) within the sample space. 

There is now defined, a sample space wit h a 
probability measure defined over it and a function 
which assigns a unique set of real numbers (an optimum 
initial decision vector) f or each element in the sample 
space. For all practical purposes (measurability not 
shown but acceptcJ), this function is a random vari­
able (38) . 

Optimiza~io1: Over a Reduaed Operation Horizon -
When consider lng a gl ven system and only the f irst 
stage opti mum decisions arc required, i~ may be desir­
able to consider l ess than the entire operation horizon 
in the optimization. To r educe computat ion time and 
the overall problem dimension, the system formulation, 
object ive function, system value functions and deter­
ministic optimization technique may be defined over a 
reduced operation horizon , k stages l ong , k<N. When 
considering the "smaller" pr ob l em to determine the 
optimum initial decision vector, the result is termed 
the k otago optimum initiaZ decision vector. Both the 
k stage and N stage optimizations start from the 
same initial stage in the operation hor izon; however, 
the k stage optimization considers only the first k 
stages of the horizon. The value functions for t he 
first k stages in both problems are t he same. Both 
prob l ems usc the same input matrix, although the smaller 
optimization consider s only the first k input vectors . 
A k stage optimi~ation, as considered here, will use 
an objective function which is obtained from the 1\ 
stage objective funct i on through a reduction in dimen­
sion. The k stage objective function will be the 
original N stage objective function wi th the last N-k 
stage values set equal to predetermined constants. The 
constants will depend upon the form of the objective 
f unct i on. For exampl e , if the N stage objective 
function is simpl y the sum of the benefits (values ) 

over the N stages, tlwn t IH· ~ st aJ:<' ohj cct i ve func ­
tion would be the sum of tlH' hl'lll'fi r ~ over the first k 
stages. The constant~ ml'llt imtt'd ahove arc all zero in 
this case . 

Applying the det<'rmi n i st i c opt.lmu:ation t echnique 
over a shorter prohlcm is ~imil ar to its application 
over a longer problem. Fnr <'Very input m:~trix in the 
sample space, a random varJahlt' (dcftncd by the system 
formulation over k stages, objecti ve function and 
system value function' over L stages and the deter­
ministic optimization Technique applicdoverk stages), 
assigns a unique k stage optimum initial decision 
vector. For any value of k, smaller than N, there 
is a corresponding rnndom variable similar ~o that 
described above . Considering these definitions, it is 
possible to represent an opt1 m1~ation over k stages 
as a random variable with the following notation: 

w c n (3) 

(4) 

(S) 

In these equations, w is the r andom e l ement from the 
sample space, representing an entire input matrix; n 
is the sample space containing all input matrices; d~ 
is the random variable 

decision vector for a 

representing the optimum initial 

k stage optimization; 6i(· ) is 
k for the random variable, d1, the functional notation 

and dk is an outcome 
1 

of the random variable, d~. 
Using this convention , it is no"' possible to make prob­
ability statements about different aspec~s of optimiza­
tion . 

THEORY 

The Clbove presentation has established a framework 
for considering the optimization process. Considera­
tion of the fi r st stage decision as a random variabl e 
wi l l enable constructive statements to be made which 
suggest a modi fied appli cation of techniques. Several 
r esults follow which are i l lustrative rather than de­
finitive and which proceed toward and investigate a 
modified application of deterministic optimization 
techniques. 

An Optimization Suggestion - Bellman's Principle 
of Optimal ity (17,37) states that no matter what has 
occurred up to the present stage , all remaining deci­
sions must be optimum to yield the maximum total value 
from that stage on. The decomposition assumptions on 
the objective function imply that Bellman's principle 
applies (37). l~usman (17) presents a good discussion 
of application of the principle for systems possessing 
a ~larkovian or Quasi-~larkovian property in the state 
variable. 1 t may be restated as follO'-'S . If the first 
i atape optimum decision vectors from an li staga 
optimizati011 al'" knorvn, then an N-i stage optimiza­
tion over the remaining N- i stages yieLd the same 
Zast N-i optimum decision vectors that are obtained 
in an N stage optimization. The onZy requirements 
are that the initiaZ state vector for the N- i stage 
optimization must be that which resuZts from the first 
i optimum decision vectors . AZso, the objective func­
tion for· the N-i stage optimization ~~rv~st be the same 



as that for the !I stage optimization with the )"il·s t 
i values being those that result fr>c:nn the firs t / 
optimum decision vectors. Although t his may appear 
obvi ous , it is not. I f the syst em state or values at 
each stage were functions of variabl es other than t hose 
outlined in the preceding definitions, then this prin­
ciple 1vould not apply . Addit i ona l illustrat i on of this 
principl e is presented in Appendix A. 

The above statement is t rue for any i , gi ven an 
input matrix and i nit ial system state vector, s . Ily 
appl ying the corol l ary N times f or each value of i , 
i =l , . . . ,N, the f ollowing sets of deci sion vector values 
are determined to be identical . 

(6) 

.N- i+l 
In Eq . 6, ai is the value of the ith stage decision 

vect.or resul t i ng from an N- i + 1 st age opt imization 
f rom stages i t hrough N given that s1 = s and 

d. " d'~-J+l , O<j<i (which det ermine t he i t h stage state 
J J * 

value) ; also, d1 i s the value of the i th stage optimum 

decision vector 
tained from an 
s

1 
= s . 

from the optimum decision mat r i x ob­
N stage optimization, given that 

It i s interesting to note that i f t he syst ems 
definition presented above is restri cted so that the 
state and val ue funct ion at each st age are functions 
onl y of variables of the last and present stage , then 
conventional dynamic programming can be applied as an 
opti mizati on technique . The single reser voir pr obl em 
is an example of this (12,13,16,18,48). More i mpor­
tant l y , Eq . 6 suggests a fo:r>Wa:t'd looking approach to 
decision making that is sequential and that uses any 
suitabl e deterministic optimization technique (includ­
ing t hose other t han dynamic progr amming) . Inspecti on 
of Eq. 6 reveals that t he systems optimum deci sion 
vectors may be found one stage at a time in the fol ­
l owing manner. For a given input matr ix, an optlmlza­
tion over N stages yie lds the N optimum decis ion 
vectors. Only the initia l optimum decision vector i s 
not ed . The second stage state vector is found and t he 
second st age value funct ion determined as a function 
of the second stage decis i on only . An optimization 
over the N- l stages f rom st age 2 t hr ough stage N 
yields t he second stage optimum decision vector. The 
process i s repeated over and over for each stage until 
a one s t age opt i mization yields t he Nth stage opt i mum 
decision vector. Of course, such a procedure is l argel y 
redundant and gives the same optimum decis ion vectors 
as obt ained by the first N stage optimization 
(see Eq. 6). llowever, a modification of this procedure 
may be used. One might assume that a k s tage opti­
mization, k<<N, can be used t o approximate an N- i 
stage optimization to f ind the optimum decision vector 
at each stage i. To find each decision vector at each 
stage, only k stages into the future are used in t he 
optimizations. The decision vectors given by this 
technique are termed the k stage optimwn decision 
veato:t's given by an optimization over a E_educed ~era­
tion ho:t>izon at each stage (ROHAES) of k stages . The 
l ast - k decision vectors are determined by optimi za­
t ions over just the remaining stages . Thr ee questions 
which arise are: l) can one make the above assumption; 
2) how "well" does t hi s pr ocedure estimate decisions, 
and 3) what ar e the advantages of this pr ocedure? The 
following section attempts to answer the first two 
questions ; the third is saved for a discussion . 

4 

,:,! .·;!"J'l"<>.c::mati>l(l Deviae - It has been noted by 
v;11· i o u s rc~\'; Jrchcrs t hat ther e are ti,'O factors ~Vhich 

op,·r:nc ro make t he l ength of analysis in an optlnn:a­
t ion probl em shorter than the oper ation hor i zon for 
many '"' t cr resource problems . The first and most i m­
portant factor i s that the larger t he period of analy­
s i s i s . t he higher i s the likelihood of an event or 
..:omhination of events t hat IVill cause pr evious opera­
t i(>rl:il po l i<.:y t o he irre levant t o the fut ure s tate of 
the sy~tcm [40 , 4 1) . The second fac t or i s discounti ng 
of the v;duc o f future product ion relative to current 
product ion, Iiili ch is incorporated IVithin some objective 
functi ons (·II) . These fact or s have been used exten­
sivel y in the past as j usti ficat ion for analyz ing very 
shol"t fll' r iod s Ll f time to determine system operations . 
Thc!<e facto r s ;~re the re~ult of extensive computat ional 
ex peri \'nee anu <::mnot he proved in general for .a ~Vater 
resour<:e ~)'stem . ilo"ever , the vali.Jity may be checked 
with statist i cal tests; this is i l lustrated in a fol ­
lowi ng ~oction entit l ed : i\pplication. 

If one or both of the~e factors i~ operat ing i n a 
system unJor consideration, then the optimi:ation pro­
cess may give the same or similar values f or t he de­
cision vector at tho firs t stage as the l ength of t he 
operation hori:on increases . The assumption made her e 
is that one of t hese factor s is working for a suf fi­
ci ently large c lass of input matrices to make the fo l ­
lOIVing t rue for t he di scretlzed probl em: 

P[d~ = d~ i s 1 = m] ~ P[d~ • d~ Js1 • s ]; al l s; large I 

N>k>l (7) 

Equati on 7 states t he assumption that the probabi l ity 
i s great er (or at l east equal), f or a k stage opti­
mization to give the same value for the first stage 
J eci sion vector as t he N stage optimi!at ion , then i t 
is f or an .II. stage optlmlZation, when N~k~_l. The 
val idity of this assumpti on depends upon the above two 
asswnpt ions and upon t he degree of disc ret i:ati on . 

From the previous definitions , if the first i-1 
input and decision vectors and t he ini t ial stat e vector 
are given, then t he system over the r emaining operation 
horizon cou l d be treated as a separate problem as s ho1m 
in Appendix B. The it h stage state could be deter mined 
and the ith stage value func t i on coul d be expressed as 
a function of i.th stage variables only . Al l other j 
stage val ue funct ions , j>i , coul d be rewritten as 
funct ions of variables bet1<een stages i and onl y. 
Therefor e , the optimization over stages i through N 
given the fir s t i - 1 input and decision vectors and 
i nitial state vector could be regarded as an optimiza ­
tion over t he N- i +l st ages , from stage 1 through 
stage N- i+l (see Appendix B) . NO\v, all stat ements 
r egarding the optimum initial decision vector apply to 
stage 1 of thi s transformed problem. 

P (D~ N- i+ l J- t 01 s 1 = s . ] > P[D 
l - 1 

(8) 

k In Eq . 8, D1 is t he r andom variabl e which assi gns a 

unique value for the optimum initial decision vector 
for a k stage optimizati'on fo r t he t r ansformed prob-

l em; D~ = d~. Here d~ i s the optimum ith stage de-
l t 1 

cis i on vector given by an optimizat ion over the k 



stages, i to i+k-1. Also, s1 is the initial state 

vector for the transformed problem. 
forme r notation: 

Returning to the 

k N-i+l j l'(d. = d. ( TJ . 1; fd J . 1;s
1 l 1 1 - 1-

N- i+l l d. [I ]. 
1

; [d). 
1
;s

1 l 1 - 1-
s ] (9) 

N-i+l~k~R.; all s; all [J)
1

_
1

; large t ; all [d)
1

_
1 

= a feasible set 

In the above equation, [I11_1 denotes a Matrix of 

values for the first i-1 input vectors and [d) i-l 

denote~ a matrix of values f or the first i-1 decision 
vectors. 

In particular, i f the feasib l e set of decision 
vector values is taken as the first i-1 optimum dc­
ClS1on vector~ from an N $tage opt1m1~ation, 

.N ~- 1 3 2 1 
(a1;a2 ; ... ;dN_ 2;dN_ 1 ;dN), (sec Eq . 6) then: 

J.. N- i + J j N P(d1 •d. (I).
1

; (d).
1
;s

1 1 1- !-
s) > P(d~ 

- 1 

N-i+lj ( T) (d)N • d. - · 1; · 1; 5 1 1 1- 1-
s] (10) 

N-i+ l~k~R.; al l G; all f r]i _1; largeR. 

N 
Tn Eq. 10, [d) i-J denotes the matrixofval ues for the 

first i -1 optimum decision vectors from an N stage 
optimi~ation. By either summing or integrating both 
side5 of Eq . 10 with respect to all [I)i-l' after 

multiplying by P((I)1_1), the following is evident: 

P[d~ 
l 

(11) 

N-i+l~k~1; all 8; l arge R. 

Now, d~- i+l is the optimum ith stage decision vector 
1 

from an I\ stage optimization (see Eq . 6) if the first 
i - 1 decision vectors were al so from an N stage opti­
mization. Therefore, Eq . 11 expresses how "well" t hat 
a k stage optimization at the ith st age, given the 
first i-1 optimum decision vectors f rom an N stage 
optimization, probably approximates t he i th stage de­
cision vector from t he N stage optimization . 
Equat ion 11 was developed for arbitrary i and there­
fo r e is true for all i, i=l, ... ,N-k. 

Let: 
N-i+l l N d. (d). 

1
; s

1 
= s) 

l 1 -
( 12) 

The N-k equations then represented by Eq. 11 can then 
be combined with Eq. 12 to prove: 

5 

N > k; all n ; l~rg~ ~-1 

:-:ote that, 

P(B~ N 
B~ I s 1 

k k- l 
d ·J N-k+l' N-k+:? s] 

( 14 ) 

k ln Eq . 14, BN is the random variable representing the 

total value (expressed by the objective function ) re­
sulting from the sequential optimization procedure de­
scribed in t he previous section (the application of the 
optimization technique over a RO~~S of k stages to 
determine the single stage decision vector a t each 
stage for the first N-k+ l stages and a ROIIAES of 
N-i+l stages for the l ast k- 1 stages ) . Thus, when 

k " N, B~ = 6~ • the maximum total value obtainable i u 

an N stage optimization (see Eq. 6) . Combining 
Eqs. 13 and 14 l eads to the fo l lowing : 

N>k>1 (1 5 ) 

Furthermore, if we assume that: 

'k Nl P(BN = BN s1 = 8) ~ 1; some k<N ( 16) 

then it can be shown (see Appendix C) that: 

some k; all 8 (17) 

N>k>i 

Equations 15 and 17 give some indication as to the 
suitability of the suggested procedure. Equation 15 
suggests that as the ROHAES used in the procedure in­
creases, the probability of obtaining the optimum deci­
sion matrix may increase but never decreases for a 
sufficiently large ROHAES. Equation 17 suggests t hat 
as the RO~~S increases, the probability of obtaining 
a decision matrix which gives a total value within any 

desired range (a) of the maximum (B~ ~ aB~), may in­

crease but never decreases for some sufficiently large 
ROHAES . 



These results indicate that the suggested procedure 
may be highly desirable, but they do not prove it. 
They are merely extensions of the assumpt ion of Eq. 7 
to systems defined here which possess the pr operty of 
Eq. 6. To utilize this suggested procedure, the system 
at hand will have to satisfy the syst em definitions 
given above. Tests will have to be made to ascertain 
the existence of the above results. Then, the suggested 
procedure may be used with some confidence to estimate 
optimum decision matrices . 

APPLICATION 

It would be difficult to find to what extent the 
assumpti?n.o~ Eq. 7 applies to all syst ems. The gen­
e:al def1n~t1on of the system, value functions, objec­
tlVe fun7t1ons, and optimization technique allow too 
many var1ab~es to be.present f or general assumptions . 
The assumpt1ons verac1ty may be aff ected by many things : 
the system characteristics , t he exact form of the value 
functions, and t he objective function , the number and 
character of i nput, output, decision and state vari­
ables, the number of values al lo1~ed to each of these 
variables in a discrete representation , the systems 
inherent behavior, the type of optimization technique 
used, etc. These are just some of the factors to be 
considered . 

In several studies (6), the assumption was checked 
for variations of the single reservoir problem. In all 
t:ials, Eqs. 7, 9, 11, IS and 17 were found to apply 
w1th only a very small ROIIAES required in each case . 
The validity of the assumption has been recognized in 
the past (as previously mentioned) and is believed here 
to apply to many other water resource systems. The 
example studies are too lengthy to include here, but, 
the following reservoir system problem is presented to 
illustrate the assumptions validity . The application 
procedure and its advantages arc also il lustrated . 

P:r>oblem - The system used in this study is a single 
reservoir with one inflow, one outlfow and benefits 
(system value functions) representing one demand placed 
upon the reservoir. The determination of the release 
(outflow) in each month is the set of decisions and 
the amount of water in storage at the beginning of the 
month is the state variable. Note, the input vector, 
t he output vector, the state vector and the decision 
vector at each stage in the general syst ems definition 
are now degenerate to singl e variables. The system is 
to be operated over N months (the operation horizon) 
so that each month represents a stage. The systems 
inherent behavior is represented by the fo l lowing 
system equations: 

The constraint set for the system is determined by the 
following set of constraint equations. 

0 ~ si ~ S; i=l, .. . ,N+l 

The boundary condition is: 
51 = 8 

In the above equations, si is the storage 

the reservoir at the beginning of stage i, 

infl ow (input) into the reservoir in stage 

(19) 

(20) 

(21) 

(state) of 

I. 
l 

is the 

i., d. 
l 

is 

the.outflow .release (decision) to be made in stage i , 
S lS the reservoir size (upper limit on the state 
variable), s is the initial storage at the beginning 
of stage 1, and I is the upper limit on the inflow max 
variable selected to give the problem a known dimension 
for computation purposes. 

In the reservoir system defined here, no effort 
was made to represent actual values of storage, inflows 
or outflows. Instead the problem solution dealt with 
the indices of storage, inflow and outflow. The in­
dices for all quantities were defined such that each 
quantity bet1~een consecutive indices ~~as the same for 
all indexed variables. For example, an inflow index 
of 3 and an outflow index (decision index) of 2 create 
a.change in the storage index of 1 . Representing a 
d1screte system in terms of these indices allowed for 
more efficient computer programming, permitted easy 
manipul ation of numbers and provided for a general 
representation. Any size reservoir, with its inflow, 
outflow and storage can be represented easily by t he 
same model which considers indices. The degree of 
refinement depends upon how finely the values of the 
indexed variab l cs are represented as indexed quanti tics . 

There ar~ 26 discrete values for inflow at any 
stage , 0, 1, 2, ... , 24 or 2S; also, the capacity of 
the reservoir has an index of 25. There is then a 
possibility that the decision {release) at any stage 
could be SO. The initial condition for the amount in 
storage in the reservoir is set at s ; 10. The inflow 
time series is represented by a data generation model 
'"hich 1s a ~larkov mode 1 of order two (see Eq . 22 below) 
where the present value depends upon the previous two 
values. The model has periodicities over the year (12 
months) in the mean, standarJ deviation, first and 
second order serial correlations and first and second 
order ~tarkov model coefficients. 

I. = - 1 - c . + 2..:.=~ c + R o + ~(Ii 1-IJ. 1) (I. .,-u . .,) l 
l tJi-1 l,l-1 C) i-2 2,i-2 i~i i \Ji 

2 ., 
- cl,i-1 - c2,i -2 - 2cl,i-lc2,i-2Pl,i-2 

(22) 

In Eq. 22, lli and oi are monthly mean and standard 

deviation respectively for month i , Pt,i-k is the 

tth order correlation coefficient between the stan­
dardized values of month i-k with month i-k+t, c.t,i -k 

are corresponding ~larkov model coefficients and E;. 
l 

is the independent stochastic component (random value) 
for month i. Values of inflow were generated according 
to Eq. 22 between zero and 7000 and transformed into 
Jiscrote values for inflow with 6720 to 7000 considered 
as a value of 2S . The parameter values needed in Eq. 22 
are r,iven in Tables 1 and 2. The l ength of the opera­
tion horizon is set at 10 years with each month con­
sidered as a stage . Thus , the operation horizon is 
120 stages long. 



TABLE 1 

DATA GENERATION PARAMETERS FOR ~10DEL OF EQ. 22 

Month i )Ji c:;i Pl ,i-1 P2 ,i-2 

Ji\N 1 302.5 79.1 0.4160 0.3375 
FEB 2 386 . 0 149.4 0.4829 0.5032 
MAR 3 684. 5 235 . 9 0.3179 0.0966 
APR 4 1836.0 912.8 0 .6696 0.3617 
MAY 5 3368 . 8 1397.1 0. 6210 0. 4128 
JUN 6 4543 . 2 2012.8 0.7962 0.6460 
JUL 7 1349.7 1063.1 0.7503 0 .4740 
AUG 8 520. 1 267.3 0.5507 0 . 2689 
SEP 9 302 . 5 161.7 0. 7712 0 . 7409 
OCT 10 392.2 238.1 0.9132 0.5803 
NOV 11 291.4 136 . 2 0.6904 0 . 3559 
DEC 12 346 . 9 101.2 0.5723 0 . 5254 

TABLE 2 

INDEPENDENT STOCHASTIC CO~IPONENT DISTRIBUTION 
FOR MODEL OF EQ . 22 

f; F (C) c; F ( I;) .. F (I;) 

-2.00,0 0.00 - 0.355 0.34 0. 290 0 . 68 
-1. 285 0.02 -0 . 320 0.36 0.335 0.70 
-1.140 0. 04 -0.280 0.38 0. 380 0 . 72 
-1. 04 5 0. 06 - 0. 245 0.40 0.430 o. 74 
- 0.965 0.08 -0.210 0.42 0.485 0.76 
-0 . 905 0.10 -0.175 0.44 0.535 0 . 78 
-0.84 0 0.12 -0.140 0.46 0.595 0.80 
-0 . 790 0.14 -0.100 0.48 0.660 0.82 
-0 . 74 5 0.16 -0.060 0 . 50 0. 725 0 . 84 
-0 . 690 0.18 - 0.020 0.52 0 . 800 0 . 86 
-0 .640 0.20 0.010 0.54 0.890 0.88 
-0 . 595 0. 22 0.045 0 . 56 0 . 990 0. 90 
- 0. 555 0.24 0 . 085 0.58 1.100 0. 92 
-0.510 0.26 0.120 0.60 1. 240 0.91\ 
-0 .475 0.28 0 .160 0 . 62 1.420 0. 96 
- 0.440 0.30 0.205 0.64 1.730 0.98 
-0.395 0.32 0. 245 0.66 5.000 1. 00 

The system performance is measured with a benefit 
function which assigns values to decisions at each 
stage. The benefit at each stage is given in Table 3. • 

TABLE 3 

BENEFIT, b. 
~ 

FOR DECISION, d. 
1 

Decision 0 2 3 4 5 6 7 8 9 10 
Benefit 0 23 45 81 125 143 162 175 203 225 243 

Decision 11 12 13 14 15 16 17 18 19 20 21 
Benefi t 250 260 282 297 301 307 311 312 310 307 299 

Decision 22 23 24 25 26 27 28 29 30 31 32 
Benefit 288 281 272 258 250 237 220 213 200 187 180 

Decision 33 34 35 36 37 38 39 40 41 42 43 
Benefit 157 141 125 107 73 42 25 16 8 0 0 

Decision 44 45 46 47 48 49 50 
Benefit 0 0 0 0 0 0 0 
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The system performancc over th(' cnti re opcrat ion horizon 
i s measured by the following objective function . 

N 

n = L bi 
i =l 

(23) 

In the above equation, bi is the benefit obtained in 

stage i and B is t he total benefit (total val ue) 
obtained from t he system. There is no salvage value 
assigned to the system and no end condition on storage 
in t he r eservoir . 

Tne deterministic optimization technique used here 
is dynami c programming. It is particularly wel l suited 
to the simple reservoir system outlined above (40,42,48). 
Description of this application and its use is presented 
el sewhere and will not be repeated here; see (3, 9,15 , 
16,17,18,19,21,27, 31,33,40,46,48) . lfhen dynamic pro­
gramming is applied over a smaller number of stages 
k<<N t o determine the singl e stage decision, the fol­
lowing objective function is used: 

k 
B' = L b. 

i=l ~ 
(24) 

In the event that more than one decision at a stage is 
optimum, the s mal ler one is chosen. Thus, a unique 
decision is given in the optimization, 

The above single r eservoi r problem definition is 
within the general systems definitions of the previous 
sections. The results of these sections are expected 
to apply for this problem if the assumption of Eq. 7 
is valid. 

Testing - To ascertain whether or not the assump­
tion made previously is good for this system, a sta­
tistical test was made. Also, the generated daca was 
used to give indications of how wel l the new procedure 
works . For the system at hand, Eq. 17 is used as the 

·null h)rpothesis . More specifically, the following 
hypothesis was test ed : 

An equivalent s t atement for k ~ 5 is: 

H
0

: F5(a) ~ F4 (a) ~ F3(a) ~ F2(a) ~ F1 (a); for all a 

H1: Fk(a) > Ft(a); for some k>~ and for some a (26) 

k N 
In this statement of the hypothesis, Fk (a) = P [BN/ BN ~a]. 

To t est this hypothesis , 150 input real izations 
of 120 stage length were generated independently, 30 
for each value of k (k = 1,2,3,4, and 5). Us ing k 
stages for the ROHAES, optimizations were performed on 
each of 30 realizations for. each value of k to obtain 

k values for the random variable , BN . Also, 120 stage 

optimizations were performed on each of the I SO real ­
izations to obtain values for the random variable , 

N k N BN" Values of BN/BN were then cal culated for each 

30 realizations for each k. These ordered value!< 
appear in Table 4. Si nce the input r ealizations were 
all generated i ndependently , then the fi vC' samp l<'S of 
size 30 are random sampl es and arc mutually independent.. 
The one-sided, five-sample, Smirnov t est is therefor~ 



TABLE 4 

ORDERED VALUES OF RELATIVE TOTAL BENEFIT (RELATIVE TO 
MAXIMUM TOTAL BENEFIT) OBTAINED WITH THE MODIFIED 
APPLICATION NITH ROHAES = k, FOR 15 0 RANDO~! INPUT 

REALIZATIONS 

k 1 

.7366 

. 7445 

. 7451 

.7452 

. 7460 

. 7477 

. 7483 

.7492 

. 7494 

. 7497 

.7499 

.7513 

.7520 

.7522 

.7524 

. 7527 

. 7530 

. 7532 

. 7537 

. 7561 

.7568 

. 7573 

.7584 

.7600 

. 7602 

.7608 

. 7642 

. 7651 
·. 7682 
. 7713 

applicable . 

2 

.8285 

.8331 

.8338 

.8353 

. 8391 

.8399 

.8400 

. 8416 

.8429 

. 8434 

. 8442 

.8458 

.8477 

. 8512 

. 8512 

. 8513 

. 8515 

.8537 

.8546 

.8547 

. 8547 

. 8559 

. 8562 

. 8564 

. 8593 

.8600 

.8608 

. 8632 

.8662 

.8673 

3 

. 9118 

. 9140 

.9152 

.9153 

.9181 

.9191 

.9193 

.9209 

.9228 

. 9251 

. 9253 

. 9255 

. 9257 

.9261 

. 9271 

. 9279 

. 9289 

. 9293 

.9300 

.9303 

.9310 

. 9320 

.9331 

.9331 

. 9334 

.9339 

. 9357 

.9358 

.9370 

. 9468 

4 

. 9534 

. 9535 

. 9603 

.9623 

.9632 

.9632 

.9651 

.9654 

.9660 

.9668 

.9673 

.9682 

.9687 

.9692 

.9698 

. 9704 

. 9715 

.9719 

.9720 

.9724 

.9730 

.9756 

.9760 

.9773 

.9780 

.9808 

.9828 

.9857 

. 9858 

.9882 

Because the random variable, 

5 

.9783 

. 9809 

.9820 

.9832 

.9839 

.9840 

. 9844 

.9845 

.9852 

.9871 

.9878 

.9883 

.9895 

. 9899 

. 9913 

. 9915 

. 9932 

. 9936 

. 9939 

. 9949 

. 9950 

.9952 

.9957 

. 9958 

.9962 

. 9972 

.9975 

.9978 

.9992 

.9993 

actually discrete, the test is likely t o be conserva­
tivo (5) . This is a nonparametric test where the test 
statistics distribution has been obtained by Conover (5) 
as a mat hematical function of the number of samples 
and the mutual size of each sample. The test statistic 
for t his appl ication becomes: 

T = sup{[F5 (a)-F
4

(a)) ,(F4 (a) -F
3

(a)) ,[F3 (a)-F2(a)), 
a 

(27) 

In Eq. 27, Fk (a) is the sample cumulative distribution 

obtained from the order statistics, used to estimate 
Fk (a). 

The deci sion rule is to reject H
0 

at the level 

y if the observed value of T exceeds t he 1-y quan­
tile of the distribution of T as given in the pre­
ceding reference . From inspection of t he ordered values 
of the data in Table 4 and from an auxi llary plot in 
Fig . 1 of the sample cumulative distributions, T = 0 . 
From t he distributionof T, for y = .10, the critical 
region corresponds to values of T greater than the 
. 90 quantile, w. 90 1~hich is 0. 8 . Since T < w. 90, 

the null hypothesis is accepted. Jnspection of the 
data indicates that for high probabilities of rejection , 
the test would still have indicated acceptance of 11

0
. 

Thus, 
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(28) 

The results of the theor etical derivations and assump­
tions have been verified with a high degree of certainty 
for the system considered here for ROI~ES ~ 5. 

Further inspection of Table 4 shows how wel l the 
modified application performs in estimating decisions 
1~hich result in near optimum performance. For exampl e, 
with a high probability, the modified application with 
ROHAES = 5 1~il1 give a toi:al benefit at least within 
98 percent of the maximum possible. Al so , as the ROHAES 
increases, t he procedure does consistently "better ." 
The increase in the median relative total benefit is 
about 0. 10 for k=l and 2, and continues to improve 
for higher values of k . 

DISCUSSION 

There are several advantages of the modi f ied 
application over conventional applications that are 
immediately apparent. All of these are computation 
reduction advantages. The following sections present 
various aspects of the resu1 tant computation reduct ions 
in various situations . 

The Modified AppZiaation and Systems of Equations­
When the optimization t echnique to be used involves the 
solution of a system of equations such as ljnear or 
quadratic programming, etc . , then there is an advantage 
to applying the technique over a RO!lAES of k stages . 
A reduction of stages in the optimization corresponds 
to a reduction i n the number of variables in a system 
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FIG. 1. THE ENPIRICAL CUNULATIVE DISTRIBUTION, f.k (a) · 

of equations and a reduction in the number of equations. 
Therefore, t here is a reduction i n the computations 
needed for each single stage decision . Depending upon 
the problem at hand and the values for RO~~ES and N, 
then a search with N kxk syst ems of equations may be 
easier than a search with an NxN system of equations. 
There is certainly a reduction in computation storage 
and there may be a reduction in computati on time. 

The Modified AppZiaation and exhaustive Search 
Teehniques - The optimization t echniques t o be used 
may employ the simple principl e of enumerating every 
feasib l e decision matrix and select ing the one which 
yields the maximum total benefit for t he system. _In 
some ~omplex systems, this technique may be the only 



one ~.·hich can be used. The application of this technique 
with a ROIIAcS of k stages to determine each of 
the entire sequence of decisions results in a drastic 
reduction of computation time and storage compared to 
the application of this technique over the entire 
operation horizon. To i l lustrate , consider a system 
with m possible values for the decision variable at 
each stage and N stages in the operation horizon. 

There arc then mN combinations of decision sequences 
to investigate in the exhaustive search . If the modi­
fied application of the optimization technique is used, 

there are mk combinations of decision sequences to 
investigate at each stage for the first N-k+ 1 stages. 

There are mk-i combinations of decision sequences to 
investigate for the last k-1 stages ; i = l, ... ,k-1. 
Therefore, there are ~11 decision sequences to inves-

tigate for the exhaustive search technique and ~12 
decision sequences to investigate for the modified 
application of the exhaustive search technique, t~here: 

Ml 
N = m 

k k-1 k-i 
~~2 " (1\-k+l)m + L m 

i=l 

For m = 10, N • SO, and k " 3, then 

M
2 

= 48110. Of course the numbers, M1 

(29) 

{30) 

and 

do 

not truly represent the number of decision sequences to 
be investigated in each case, the actual numbers are 
smaller since only some of all possible decision 
sequences will be feasible . 

The Modified Application and a Single Staga 
Decision - When the optimization technique to be used 
requires multiple evaluations of operating decision 
sequences (such as dynamic programming) , then there is 
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an advantasc to applyinJ: th<· t•·chntque ov<'r a ROIIAES 
of k stages (instead of th1• t•ntin• operation hori::on 
of N stages). ll'h<'n ju~t tit,• singl1· st:tr,c decision i s 
desired, then this appl ic.:at ion wi I J involve l ess com­
putati on timo to determine t lt1• si ttl: l c stage decision. 
This feature wi ll he m:•dc u.,,. of in tlw dC'vclopment of 
an alternate stochastic optimi:at ion technique in 
Chapter I I I . 

Furthermore, when only one stage decisions are 
required (as in th<' practical operation of an existing 
water resource system) tht•modificd application ennbles 
a reduction in the amount of future information re­
quired. When the future information is unccrta.in, as 
in stochastic optimizations, then this feature is i m­
portant. Forecasting reliability generally declines 
as the length of time into the future for the forecast 
increases. This is true for water resource projects 
t>here forecasts are for precipitation, streamflow, etc. 
If the modified application of the optimization tech­
nique is relevant for the system at hand, then fore­
casts may only have to consider a small number of 
stages into the future . Now, forecasts arc only made 
for a smal l number of stages into the future in prac­
tice to avoid severely unrealiable results. Therefore, 
an engineer may no~ be r easonably satisfied that he 
has a certain degree of suboptimum performance, even 
though he cannot forecast the entire planning horizon. 

Determination of the Required ROHAES - In any use 
of the modified application, there is a question as to 
what length of the ROHAES is satisfactory. As the 
length of the HOHAES is increased so are the computation 
requirements, but so is the degree to which r esults ap­
proach optimum. To determine the acceptable value for 
the ROIIAES, a preliminary statistical study (similar 
to the one above) will have to be made. It is not 
necessary to generate so many points for analysis in 
all cases, as wi ll be seen later. The allowable com­
putation for determining the ROHAES will depend upon 
the significance of the optimization r esults. 



CHAPTER Ill 

STOCHASTIC OPTII-IJZATION 

Of concern here, is the practical application of 
stochastic optimization techniques to problems of find­
ing optimum operations sequentially for water resource 
systems. There are attendant difficulties associated 
wi•h the various stochastic optimiza•ion techniques in 
use today and there is a need for a sequential tech­
nique which surmounts these difficulties. 

This chapter further defines opt1m1zation in the 
stochastic realm by briefly condensing previous defi­
nitions and continuing them. Furthermore, this chapter 
review.s existing techniques, identifies associated 
difficulties , suggests an alternative sequential tech­
nique (which utilizes the technique of the previous 
chapter) to overcome these difficulties, and compares 
the alternative in a hypothetical example. 

The following is not a bona fide operations 
research development. It is a practical development 
of a heuristic methodology which utilizes present prac­
tice and understanding and which enables operation of 
reservoirs in "near optimum" manners. 1\'hile not truly 
optimum, it can be shown, for a hypothetical case, that 
resultant benefits are generally "closer" to optimum 
with the use of the alternate technique than with the 
use of an existing technique. 

DEFINITIONS 

The definitions given in Chapter II concerning the 
optimization probl em are continued here for discussion 
of the stochastic optimization problem . These and the 
following definitions are similar to those found in the 
literature (19,40,46) and serve to give a nonrigorous 
framework for considering stochastic optimization tech­
niques. 

There are many methods available to determine the 
optimum set of decisions for a given syst em with given 
inputs , such as: linear, nonlinear, quadratic and 
dynamic programming, (19,40,46). Depending upon the 
characteristics of the system, one or more of these 
deterrninistia optimization techniques may be suitabl e 
for use in determining the optimum decision sequence . 
The techniques are referred to as deterministic when 
applied to a system for a known set of inputs: All of 
these techniques require information concern1ng the 
inputs into the system. 

The Stochastic Optimization Problem - In most 
water resource problems the inputs into the system are 
not known in advance. However, various statistical 
aspects of the i nputs are estimated from available 
data and the problem then becomes a stochastic optimi­
zation probZem. This study assumes that available data 
exists and that the stochastic hydrology can be ade­
quately repr esented. For studies where imperfect mod­
cling of the stochastic hydrology affects the system 
design , see (4 , 7,11,34,44) . The deterministic opt imi­
zation techniques available from the operations re­
search field are then employed in one of two basic 
manners to determine the optimum decision sequence 
(40, 41,47). Implicit stochastia optimization deter­
mines the optimum decision sequence for each of many 
possibl e realizations of system inputs . The inputs are 
generated according to their assumed stochastic nature. 
The optimum decision sequences are then studied and re­
lated to system variables that were found to have a 

lO 

bearing on the decision through the use of multivariate 
analysis. These relations are then used to estimate 
the optimum decision sequence for the system for use 
in design or actual operation. E~pZicit stochastic 
optimization determines the "optimum decision probab­
i lity" at each stage ofasystem's operation based upon 
the known probabilities of inputs. 

ImpZicit Stochastic Optimization - The schematic 
for this procedure is presented in Fig. 2. The pro­
cedur e in implicit stochastic optimization (ISO) is as 
follows (40,41,47,48). The system and the stochastic 

ESTIMATE INPUT MCDELS FROM AVAILA6LE DATA 

GENE~ATE AN EN71RE RANDOM INPUT REALIZATION USING INPUT MODEL 

OET:::qMINIS TICALLY OPTIMIZE TO fi~D ENTIRC CECISION SEQUENCE 

S70RE ALL DECISIONS. I~PUTS, STATES, ETC. 

rtPtOt man) times to cbtoi" 
mulllvoriote onoly'" "doto• 

~--~------------~ 

SELECT IMPORTANT •INDEPENDENT VARIABLES• 

SELECT DECISION FUNCTIONAL FORM=:] 

PERFORM MULTIVAP.IATE ANALYSIS 70 FIT 
FUNCTION TO DATA 

USE BEST FIJNCTIO~. FIT TO THE DATA, AS THE OECIS:C:I 
ESTIMATOR· TO ESTIWA7E OPTt:.:UM DECISIONS FOR SYS7EM C0~'<-1TIONS 

FIG. 2. IMPLICIT STOCHASTIC OPTIMIZATION TECHNIQUE. 

nature of the inputs are represented by suitable math­
ematical models. The models are then used to generate 
time series realizations of tho inputs (input reali:a­
tions) over •he operation horizon. A suitable deter­
ministic optimi zation technique is chosen, compatible 
with the system models, and applied to find the optimum 
decision sequence for each input realization. A record 
is kept of the system states, outputs, inputs and 
optimum decisions for all of the generated_time seri~s. 
A multivaria~e analysis (usually a regress ton analysls) 
is performed to determine the relationship between the 
optimum decision at each stage and the other system 
variables. This relationship wi 11 be used in subsequent 
design and/or operation when the future is unknown. 
Therefore, the multivariate analysis is used to find 
the relationship between the optimum decision at each 
stage and only those variables whose values are known 
prior to that stage or those variables wh~se _values 
are estimated in a forecast. If the regress1on 1s made 
using forecast variables, then the forecast variables 
are generated along with the other regression data 
al though they do not enter into the optimizations . 
Young (48) has studied reservoir operation rules and 
their determination with forecasts. 

One of the better known versions of ISO in Monte 
Carlo Dynamic Programming (MCOP) proposed by Young 
(47,48). The procedure in ~~DP is identical to that 



described above for ISO, but the deterministic 
optimi~ation technique used is dynamic programming. 

The advantage of ISO over explicit stochastic 
optimi;ation is that the results from ISO represent 
decisions obtained to achieve the maximum total benc:­
fit for the system. Explicit stochastic optimi:ation 
invo 1 vel> a different type of ''optimum" solution as will 
be discussed shortly . ISO is applicable to a wide 
variety of problems. Its use of data generation tech­
niques means that the problem docs not have to be solv­
able by analytical techniques a s simulation and esti­
mation are utilized . Therefore, very compl ex systems 
m:1y be studied with this method where the limits on the 
problem complexit y are determined by the limits of the 
computing facilities and available funds . 

There are several disadvantages t o this method . 
Some conflict exists over what type of multivariate 
an:~lysis is most suitable to determine the desired 
relationships. Very often, subsidiary studies must be 
made to find the best function out of several and the 
sisnificant variables to usc in the relationship. Also 
the r()Jiabilit)' of the decision estimates may well be 
different each time an estimate is made. Furthermore, 
multivariate ana l ysis techniques often give poor esti­
mates of the dependent variable at the extreme values 
for the independent vari:lblcs. Thus, the decision may 
be poor for extreme values encountered in practice. 

ISO may require a large amount of computation time 
and/or storage In tht> multivariate analysis . The amount 
of generated data required to give good estimates de­
pends upon the estimating function and the number of 
variables considered important in it. For a given liinit 
on the computational faciUties, it is obvious th:lt the 
larger the number of significant variables and discrete 
values for those variables, the smaller i s t he amount 
of generated d3ta points for each variable 1~hich can be 
analyzed. Thus, generally the number of significant 
variables for use in the analysis is restricted for 
practical considerations. 

Perhaps the most important disadvantage of 150 is 
that the results may give very poor estimates of the 
optimum decisions. Although any system can conceivably 
be studied l•:ith ISO, the multivariate relationships are 
only estimates of the true optimum decision at each 
stage. How ~~ell such an estimate performs depends upon 
the st ochastic nature of the inputs, the system itself 
and the dependence of the optimum decision at a stage 
upon the future operation~ of the system. Thus , the 
estimat e from the multh·ariate analysis may be i mpaired 
if the optimum decision :It each stage actually depends 
upon many variabl es. 

Finally, ISO is not an adaptive procedure. If 
ISO were to be used for the practical operation of an 
existing system, then the analysis wou] d be made once 
to estimate t he decision function. The decision func­
tion would then be useJ to operate the system. However, 
as neh data becomes available at each stage of the 
system ' s operation, it is not utilized in the already 
determined decision function . The exception to this 
statement i~ when the decis ion function uti l izes a 
forecast vari~ble. Then new data can be used to give 
improved forecasts for use in the decision function . 
liOiiever, the decision estimates relation with the fore ­
ca~t variab le has already been determined in the ISO 
and the additional data avai lable at later stages of 
th e operation were not used in this determination . 
Hence. regardless of the variables used in ISO, t he 
procedure is not adaptive. 
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E::::pZicit Stochtu:i i r· Opt.i.mizat-imr - The schematic 
for these procedures is presented in Fig. 3. The def­
inition given hercforexplit'it stochastic optimization 
(ESO) is identical t o that given by Roofs and Bodin (41 ) 
for explicit stochastic model s . An explicit stochastic 
optimization probl em uses the probabil ity distributions 
of streamflow (inputs) at each stage direct ly in the 
stochastic optimi:ation rather than using samples drawn 
in data generation procedures (ISO). There are two main 
problem types of concern here that fi t into this 
category . 

ESTIMATE INPUT PROBASILITIES AT EACH STAGE FROM 
AVAILABLE DATA eq. P( I. i l 

DEFINE BENEFIT FOR ALL SETS OF CONDITIONS e.g. V ( d, s,l, I ) 

MAXIMIZE EX?ECTEO TOTAL BEtJEFIT FOR OPTIMUM PROBABILIT IES 
e.q.mo• :rd:r,r,!;V(d,s,l,ll P (d,s.l,1) .,,, Id!5 P(d,s,l,ll• Pll,i) 

CALCULATE CONDITIONAL D[CISION PROBABILITIES 
eq P(d(s,l,l) • P(d.s.I.IliZdP(d,s,l,l l 

FORI.lU:..ATE TABL E OF OE:ISIONS OR DECISION 
"ROBABILITIES FOR ALL SETS OF CONCITIOI\S 

US!:: TABLE AS THE DECISION ESTIW~TOR ·TO ESTIMATE 
OPTII/U~ft O:'C!SIONS >OR SYSTEM OPEqATIONS 

ESO Tyoe I (eg. stocnastic linear proQromminq 

ESTIMATE IN?UT :>nOBAB!~IT!ES AT EACH Si'AG~ FROM 
AVAILABLE O.e.TA eg. P(J,Iil ') 

DEFINE BENEFIT FOR ALL SETS OF CONOITIOilS eg V(d,s.l) 

DETERMINE RECU~RENT RELATION FOR CURRENT STAGC (I) 
e.; . 11 (s,l) • mo•[V(d,s.i l · I 1• P( t,I(I"Hi+J (s• ,r•>J 

MAXIIVIZE BENEI'IT FOR REVAINING STAGE(S) 

L--- ----------.-Jrepeat. sto~tlng a• lost stage 
cr.d proc:eed1n9 l'lwOrd flrs1 

USE T.:lill.E .:.s THE OECISIO:~ ESTIYAT(IR ·TO CSTIMATE 
OPTIMUI.I OECISIO'IS FOR SYSTEM 0°E4ATIONS 

ESO Type 2 (e.Q s!ocr.ostic dynomic prvQrarTominQ) 

FIG . 3. EXPLIC IT STOCHASTIC OPTIMIZATION TECHNIQUE. 

The first type of ESO problem was proposed by 
Manne (29) and used by others (14 ,16, 27,40) . The goal 
of the optimizat ion is to maximi ze the expected total 
benefit for the system. Probabilities are assigned to 
each of the possible inputs at each stage of the plan­
ning horizon. A benefit function is defined which 
gives t he benefit obtained for baing in an)· state at 
any stage with any input and making any decision . The 
objective function is the sum over al l states , stages, 
inputs and decisions of the benefit function multiplied 
by the probability that these conditions occur. Thus, 
the objective function represents the CX)IC('/ cd tot:ll 
benefit for the system. A suitabl e optimi za tion t ech­
nique i s appl i ed to find that set of pt·ohahi li t i cs 
(for being in each state at each st:~gc with eacl1 input 
and making each decision) which maximi::es the expected 
total benefit. These probabil it i cs arc: th<'n us<'d t o 
calculate the conditional probabilities of making a 
decision given that the system is i n a given ~tat~ ut 
a given stage receiving a given input . lde:JII y, thest• 
conditional probability distributions assign a probah­
ilit y of unity to a particular decision and values of 



:ero to all other decisions for each set of conditions. 
Thi s represents a pure strategy (26,45) , i.e., there 
is no question of ~~hat decision to make for a given set 
of conditions . Unfortunately, pure strategies are not 
always obtained. For complex, practical problems, 
"mixed" strat egies are obtained and used in some suit­
able manner to determine the decisions . In this ESO 
problem definition, if the optimization technique used 
i s l inear programming, t hen this problem is known as 
stochast ic linear programming (14 , 26, 40) . 

The second type of ESO procedure finds the decisi on 
at each stage which maximizes the expected total bene­
fit in the remaining stages . This procedure is applied 
successively at each stage going back~>ard in real time. 
This procedure has been called stochastic dynamic pro­
gramming in the past (14,41,47). 

A third type of ESO problem is not easily dist in­
guished from the first two t ypes . lts inherent feature 
is that, instead of a probabi lity distribut ion for 
inputs at each stage, an analytical model (such as the 
~tarkov chain) is specifi ed for inputs and the distribu­
tion of states or decisions then found analytically 
(22) . 

The advantages of these procedures over ISO is 
that the results obtained from ESO represent the con­
ditional probability distribution for the optimum de­
cision at each stage for any condit ions. There is then 
more information utili:ed for the choice of the deci­
sion at each st age . Instead of just a single estimate, 
the probability distribution is given ; a l though, the 
probl em of selection of the decision may still r emain. 
A table of decisions or decision probabilities is ob­
tained , indexed by the state of the system, inputs , 
s t nges , etc . , which gives the maximum expected t otal 
benefit for the syst em. These values arc obtained 
considering the probabilities of infl ow, values of 
benefit, etc., which can occur in the future nnd they 
reflect the dependence that the Jecision probabilities 
have on t hese future probabilities . There is no multi­
var iate anlaysis and no conflict over the different 
forms of analysis within ESQ. There are none of the 
ot her difficulties mentioned above , ~Yhich are associated 
with multivariate analysis in this method . 

Ther e ar e several disadvantages to this method 
however. The method involves a great deal of computa­
tion time and storage . Therefore, it s application to 
complex systems is severely 1 imited. In most problems, 
simpl ifying assumptions ar c often made to reduce the 
probl em . Among the most prevalent assumptions made are 
those of an unchanging (steady-stage) probabi lity dis­
tribution for inputs at each stage, that the system can 
be repr esented by a cyclic (repeat ing) operation and 
so only one cycle needs to be analyzed and that the 
system can be r epresented using a small number of 
discrete values for the states , inputs and decisions 
(14 , 27 ,40, 41 ). Methods have also been developed to 
decrease the dimension of reservoir operation problems 
by reducing some of the decision and state variables to 
parameters ( 16,22) . Analysis in the past has been 
limited to simple reservoirs or simplified systems of 
reservoirs in t he water resources fie ld . Even in these 
situations, the resul t s are l i mi ted in practical ap­
plications . In general then, ESO can be appl ied only 
to much simpler systems than can ISO. Also, usual l y 
much more problem reduction and simpl ification is nec­
essary to apply ESO than is necessary to apply ISO 
(40,41 ) . 

The "optimum" set of decisions (or decision 
probabilities) obtained through t he use of this method 
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are not the same as the optimum decision sequence 
defined i n section 1 of this chapter. If a syst em can 
be investigated using ESO and the results appl ied for 
a given input r ealization, then the total benefit ob­
tained would not necessarily be the maximum total bene­
fit. This is true even though the expected total bene­
fit has been maximi 1ed as defined above (see Appendix V) . 
It may be desirabl e to operate the system i n a way 
which gives the highest (or c lose: to the highest ) return 
possible for the input time series r ealization which 
wi 11 acutally occur. This has been impossib! e to do up 
until now unless we are concerned only with a determin­
istic fu t ure . ISO at least uses maximum total benefit 
as the obj ecti vc for many such "futures" and obtains an 
estimate of ~he decision function . ESO does not solve 
for this set of decisions . It only f inds that set of 
decisions (or decision probabilities) which optimi:es 
performance by maximi zing the expected return of the 
syst em. Like, ISO, ESO is also not an adaptive pro­
cedure in that new data available at each stage of the 
systems operation is not utlli:ed i n determining the 
the deci sion table . 

PROPOSAL 

A~ AZ~err~te Stochastic Optimi~ation Techniqu~ -
Because of inherent disadvantages of 1 imited fea.si bil i ty 
in ESO , ISO has found a great amount of use in the past 
few year s as reflected in the literature . Since th1s 
type of analysis only gives an estimate of the optimum 
decision function for use in pract i ce, the results have 
been used to indicate general guidelines or operating 
ru.Zes for systems . Operat i ng ru l es are not to be con­
fused with sets of decis ions. A set of decisions (e.g . , 
specific releases from a reservoir over its operating 
hori:on) may be obtained from t he operating rules 
(decision function). Of cour se , for a given situation 
with a particular input realization, it is more desir­
able to know the optimum set of decisions to use in­
stead of the general operating rules which may not be 
close enough to the optimum decision sequence. Then 
the maximum t otal benefit can he realized for t he sys­
tem for that input reali:ation. 

A new method of applying optlmlZation techniques 
to stochastic opti mi:ation probl ems was desir ed that 
would be sequential (al lo1~ing an adaptive npproach), 
that would have none of the disadvantages associat ed 
with ESO or ISO, and that would be most suitable in 
determining the optimum decision sequence and not just 
the general operating rul~s. Emphasis is pl aced upon 
engineering application and not on mathematical sophis­
tication . Such a heuristic method was found to be a 
co~bination (at least in principle) of the above two 
techniques . This alternate stochastic optimization 
technique (ASO) is a form of ESO employing data genera­
tion techniques common to ISO . The procedur es involved 
in this alternative are described below. 

Instead of per forming a prel iminar y ISO or cSO to 
obtain the operati ng rules , and t hen using the results 
in design or actual operation , t he ASO is performed 
direct ly in the design or actual operation. Basically, 
the procedure involves the empirical transformation of 
t he pr obabi lity distribution for inputs into that for 
optimum decisions at each stage similar to ESO analysis . 
IIOI•'ever, instead of maximizing the expected tot a 1 bene­
fit by selection of the probabilities of the decisions 
at each stage, the total benefit is maximi:ed for each 
of several possibilities for fut ure inputs (as in ISO) 
to determine the empirical distribution of the optimum 
decision at each stage. 



i'rocedu1'e - The schematic for this procedure i5 
presented in Fig. 4 . The system and the stocha5tic 
nature of t he inputs are represented by suitable math­
ematical models. The first stage decision i s to be 
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FIG. 4 . ALTERNATE STOCIIASTIC OPTIMIZATION TECHNIQUE. 

de t er mined first. To do t his , input realizations over 
the entire operation horizon are generated and a suit­
able deterministic optimi:ation technique is applied to 
the system for each input realizat ion . Only the first 
stage decision from each re~ulting optimum decision 
sequence is noted . From this sampl e of first stage 
optimum decision values , the empirical f requency dis­
tribution is constructed and used as an est imate of the 
probability distribution for the first stage optimum 
decision. Using a suitab le selection rule, such as 
the mean, median or mode, etc., a decision is chosen 
from the distribution. This decision is then used to 
operate the system for the actual input that occurs in 
that stage and places the system in a new state at the 
second stage. The second stage decision i s now deter­
mined by r epeating the data generation for input real­
izations over t he remaining operation horizon and ap­
plying the same procedure as above . Only now, the 
deterministic optimization t echnique is applied over an 
oper ation horizon with one stage less than before, for 
each input realization . The decision selected will then 
be used as before to place the system in a new state in 
the next stage with the acutal input that occurs in 
this stage. The process is repeated until the last 
decision is determined at the end of the operation 
hori zon. Admittedly, the ASO may have more appl icat i on 
in practice than in design s i nce the system is operated 
for the acutal input r ealizat i on which occurred. 

The ASO procedur e is a forward looking dynamic 
programming decomposition similar to some forms of the 
ESO Technique described as "stochastic dynamic program­
ming." As such , it can be applied only to those systems 
where Bellman ' s Principle of Optimality appl ies (dis­
cussed in Chapter II). This principle is used i n most 
dynamic programming decompositions to establish a re­
cursive relationship between optimum decisions at suc­
cess ive stages. However , it also implies that the 
optimum decision for any stage can be determined from 
consideration of only the remaining stages. Instead of 
using a r ecursive relationship t o find the optimum 
decision at each stage as a function of the next stage 
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decisions, ASO repeatedly opt1m1:es over the remaining 
operation horizon t o empirically estimate the optimum 
decision. Thus, much informH ion obtained at one stage 
of the ASO is not used at the next stage through a 
recursive relationship , but is lost. However, this 
technique a ll ow5 an emp ir i cal optimi zation with maxi­
mization of total benefit as the objective, to take 
place in the stochastic realm on a sequential, stage­
by-stage, basis. 

There are many advantages of this method over the 
other t1;o methods. The decision estimates obtained 
successively in ASO are from the (empirical ) probabi l­
ity distribution of decisions which were obtained by 
maximizing the total benefit for the system. The re­
sults do not represent only a maXlml.Zation of the 
expected total benefit. The decision estimates are 
based upon consideration of the future variables at 
each stage and yet are still usable based upon knowledge 
only of the past and of the stochastic nature of the 
future inputs. Therefore, the method does not disregard 
information supplied by the individual optimizations at 
each stage concerning the dependence of the optimum 
decision at a stage upon future variables. 

ASO is applicable to a wide variety of problems 
as was ISO. Its use of data generation techniques 
allows consideration of problems not solvable by ana­
lytic t echniques and of complex problems not suitable 
for ESQ. The simplifying assumptions , problem retluc­
t ion and simple problem r epresentation that is so often 
necessary in ESO are not necessary in this method. Any 
type of nonstationarity in the input times series can 
be used since the method and its requirements are in­
dependent of the stochastic nature of the inputs. This 
is an advantage also over ISO which requires more com­
putation of "data" in order to achieve estimates of 
decisions when the input time series nonstationarity is 
serious. 

Multivariate analysis is not part of thi s method, 
so that there is no conflict over which type of analy­
sis t o use. Since the number of optimizations at each 
stage may be set in advance, then the same number of 
decision values may be obtained for each set of pre­
ceding conditions . Thus , one has reason to place the 
same amount of confidence in each stage' s decision. 
The method does not produce any information that wi 11 
never be of usc in actual operation since the mot hod is 
used i n actual operation and only considers conditions 
of t he past which have occurred. The computation stor­
age required in the multivariate analysis of ISO is not 
needed with ASO. 

Finally, ASO can be used as an adaptive procedure. 
Since ASO determines the single stage decisions as 
they are needed in r eal time, then information that 
becomes availab le can be used to improve the mathematical 
model s for both input data generation and sys.tem re­
sponse . The improved models arc then used to determine 
succeeding decisions and so forth. It must be mentioned 
that the other methods, ISO and ESO cwz be u~cJ in an 
adaptive fashi on by r epeating the entire sutdy at c;~ch 

stage and throwing out all previous r C'sults. Sudt a 
procedure, while adaptive, would bt' highly un,•ronumka I 
thereby preventing its widespread usl" . 

Perhaps the greatest disauvantag•· of AS(I i ~: that 
its application involves a lari(C amount of l"lliiiJ•IItat ion 
time. ISO wil l give dec i sion cstim:o tt·~ or upnat 1n1: 
rules which may be applied t o t he syst•·m fur ;my tiiJII'' 
realization. The resul t ~ f rom th<' 1\SO apply onll· r.,, 
the singl e input rea lization actu.l! Jr usnl in t lw non 
junctive operation and s t ochastir opt imi::at ion u! tlu· 
system. To find result s for auoth<'r inp111 n :.ll i~ar '"" 



requires a repetition of the method. This amounts to 
a large computer time requirement. Al so, since the 
optimization technique is applied a number of times at 
each stage and for every stage , the computation time is 
great for each input realization analyzed. As an 
example, in ISO, perhaps 100 input realizations are 
generated and the optimization technique applied to 
each. There are then 100 N stage optimizations per­
formed, where N is the number of stages in the opera­
tion horizon . In ASO, perhaps 30 time series realiza­
.tions are generated at each stage and the optimization 
technique applied to each. There are then 30(N) stage 
and 30(N-l) stage and 30(N-2) stage and ... and 30(1) 
stage opt imizations performed. Thus, the computation 
time required here may be much greater than with ISO, 
even though the computation storage may be much less. 

Feasib~e Use of the A~ternative - The large com­
putation requirement associated with alternate stochas­
tic optimization would prevent its use for most problems 
normally encountered in design and perhaps for most of 
the problems of actual operation . Ho~o~ever, the con­
siderat ions presented in Chapter II would r educe t he 
required computation time for some probl ems and make 
ASO very attractive. These "considerations" provide 
for computation reduction without destroying the ad­
vantages of the method. 

By utilizing the assumption of Eq. 7 in the 
application of Eqs . 15 and 17, it should be possible to 
use k stage optimizations instead of N-i stage 
optimizations to determine the single stage decisions 
which make up the sample at each stage. Equations 15 
and 17 give some assurance that such a substitut ion 
works when the sample size is one, since the ASO pro­
cedure is then identical to the new application of a 
deterministic optimization technique. 

If the behavior described in cqs. 15 and 17 is 
found to exist, then the ASO can be modified to take 
advantage of the resulting reductions in computation. 
At each stage, the following procedure is used (the 
schematic for this procedure is presented in Fig . 5). 

(odJplhte 
Ol !ern.c1ivc ) _ r;::::-; 
r------~:'f. !NP~T MOCCl..S FROM A'VAILt.IH.[ OATA 

I 
t 
I IF CFEfU.TIC~ IS Wit .tol l~ " STAGES OF ThC £:-..:0 OF THE. OPt~:.TI()N 

HC~I~O-.. THEN LE:T • EQUAL THE ~Ut.'ftt,llt Of" Fl(hl:.l'~1ttG STAGES 

GE:t.:EfUTE A R;.:.~OOM INI>I.!'"!" RE.:.UZAT:C'\1 OVER THE NE.X T 
ll ST~CiES 01 ThE RCMAININ.:j OF[~ATION HORIZON 

~~1~1$TICALLY CPTIV..IZ( TO FtN!) Ti4E 0 [C1SICN SEQUENCE :J'IER 
L~ M.x r ' STA.Gts OF THE R(tlt.tMt:G OPE.RATIC!N riOPtlON 

STCR£ !l'lf'I::T OE.ClSION rF:Clo6 1H!: 'k STAG£ OPTI~VM O£CIStON S!OUI!:NC£ 

FORM [!IPIRICAl. FREOUCP'ICY CISTRI81JTIO~ FRO~ RANOOM SA"PLE 

USE TO EST:f.ATE OPTIMUM OECIStON FO~ SYSTEM OPEftATtO~S 

L-------- ------' ~~~~o!,!~~~';.:~:.;~~\i~11:0t 
actl 6c:Ctl:on it C:tlertnttllf' 4 

FIG . 5. ASO WITH MODIF ICATIONS. 
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The input realizations are generated for the remaining 
operation horizon over only the next k stages, k « N. 
The deterministic optimi:ation technique is applied to 
the system for each input reali~ation, but only for the 
next k stages . The value of k is that which re­
sults in optimum decisions "close enough" to the true 
optimum decisions (such a determination is di scussed 
later). Only the first stage decision from each re­
sulting optimum (k stage) decision sequence is noted. 
From this sample, the decision value for the particular 
stage is selected and the system operated according to 
that decision and tho input at that stage . The procedure 
is repeated for the next stage using the next k stages 
of the remaining operation hori:on, etc. 

The value of k required so that the modified 
ASO would give a total benefit within some specified 
range of the optimum tot;:~ l benefit with a certain level 
of probability must be determined a priori . The k 
value is a random variable, whose outcomes depend upon 
the input reali:ation used in the actual operation, the 
system charac•eristics, the objective function and the 
const raints on the system. Thus, the results from the 
modified ASO would be within some specified range of 
the optimum ~o~ith a probability dependent upon the value 
of k used in the modifi~d ASO. 

APPLICATION 

The application of ASO is made and shown superior 
to ISO and ESO fora simple reservoir srstem considered 
here . As is true for any heuristic technique, the 
suitability of ASO for any reservoir problem cannot be 
determined from one simp le example. However, its gen­
eral application can be illustrated and its suitability 
partially determined with the use of an example proh­
lem of possible interest to reservoir operators. It is 
felt that the technique is suitable for a wide range 
of system oper ation problems, but it is not the intent 
to prove that herein. 

In the follo,,ing comparisons, procedures con­
corning "tics" for the optimum decisions, infeasible 
decision estimates, etc., were arbitrarily determined. 
However, they 1•ere consistently applied for both ASO 
and ISO to m1n1m1!e differences in results not directly 
related to either method. Furthermore, since the com­
parison is hypothetic:ll, the input real i:at ions that 
were used for comparison of the ASO and ISO decision 
estimates were randomly generated from the same gener­
ator used in both the ASO and ISO. Therefore, only t he 
relative suitability of the methods may be determined. 

Problem - The system used in this study is the 
same single reservoir model described in Chap•er II. 
The system parameters were changed somewhat to see if 
the assumption of Eq. 7 was still good for a broader 
class of problems. The inflow time series is now rep­
resented by a data generation model which is a Markov 
model of order one with periodicities over the year 
(12 months) in the mean, standard deviation and first 
order correlation coefficients. 

(31) 

All parameter values, except for the correlation coef­
ficients are the same ; see Tables 1 and 2 . The 12 
values for the lst serial correlation coefficient are 
given in Table 5. 



The system performance is measured with the benefit 
function of Table 3, but weighted according to the 
fo l lowing equation. 

(32) 

In the above equation, bd is the base benefit obtained 

from outflow d in Table 3 and w. is the weighting 
J 

coefficient for benefit in month j (corresponding to 
stage i) in Table 6. 

TABLE 5 

FIRST SERIAL CORRELATION COEFFIC IENT FOR 
~10DEL FOR EQ. 31 

JAI'I FEB MAR ""R W.Y JUN JUL AUG SEP OCT NOV DEC 

l 6 1 a 9 10 11 12 

.1160 .1379 . 1829 .2696 .2930 .3220 .lOll .3105 .2542 .1947 .1360 .1041 

TABLE 6 

WEIG~ITING COEFFICIENT FOR EACII ~tONTH USED TO 
DETERMINF. THE BE~EFIT FUNCTION 

JAN FEB MAR APR MAY J UN J UL AUG.S!:P OCT NOV DEC 

1 

2 

2 3 4 

2 2 2 

5 6 7 8 9 10 11 12 

35443222 

As before, the operation hori zon is 120 months and 
the init ial state is s • 10. There is no sal vage 
value assigned to the system and no end condition on 
storage in the reservoir. The deter ministic optimiza­
tion technique used is still dynamic programming. The 
starting stage of operation is February. 

Modified AppZioation of the Optimization Teohnique­
For this system it was desired to determine whether or 
not the modified application of the opt imization tech­
nique could be made. In other words, Eq. 25 for k~5, 
was t o be tested as a hypothesis. To test this hypoth­
esis, 25 input r ealizations of 120 stage length were 
generated i ndependently, 5 for each value of k 
(k = 1, 2, 3, 4 and 5) . Using k stages for t he ROHAES, 
opt1m1zations were performed on each of the 5 time 
series for each value of k to obtain values for the 
total benefit . Also, 120 stage opt1m1zations were 
performed on each of the 25 time series to obtain the 
maxi mum t otal benefits . The r el ative total benefit for 
each optimization was calculated and appears in Tabl e 7. 
The procedures outlined in Chapter rr wer e applied to 
t hese data . The value of the test statistic was T • 0 
and t he hypothesis of Eq. 25 was accepted at all l evels, 
y , within the avai lable tables. 

Since the assumpt ion of Chapter I I i s accepted , 
then the question r emains , "which k to usc in the 
modified application of the optimization t echnique?" 
To achieve a high level of probability in obtaining 
optimum or near optimum results, the RO!IAES was selected 
t o be k • 5 stages for futur e use . From the data in 
Table 7, one can be sure of obta ining at least 98 per­
cent of the true opti mum by using the modified applica­
tion of the optimizati on technique with the RO!iAES = 5 , 
instead of using conventional applications . 
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TABLE 7 

ORDERED VALUES OF R~LATIVE TOTAL BENEFIT (ReLATiVE 
10 ~IAXIMlJl.t TOTAL BENEF IT) OBTAIN~D IVITIJ THE ~IODIFIED 

APPLICATION OF THE OPTI~1IZATION TECHNIQUE WITH 
RO!IAES = k, FOR 25 RANDOM INPUT REALIZATIONS 

k 2 3 4 5 

.7995 .8992 . 9466 .9716 .9878 

.8000 .9037 .9498 .9761 .9883 

.8038 .9053 .9537 . 9779 . 9885 

.8155 . 9064 . 9547 .9785 . 9887 

.8167 .9091 . 9606 . 9799 .9913 

Application of ltSO - The input mode 1 of Eq. 31 was 
used to generate 10 input realizations over the next 
five months starting with stage one. The 5 stage opti­
mization was performed f or each of these real izations 
and the i ni tial (first stage) decision from each was 
stored. From this sample of 5 stage optimum initial 
decisions, that decision which appeared the most times 
in the sample (representing the "most probable" deci­
sion) was selected (see Fig. 5) . In case of a "tie" 
the smallest decision value was taken . The input model 
was t hen used to generate the first stage i nput for the 
system. The most probable optimum decision was checked 
to see that it was feasible and if not , it was changed 
to equal the feasible value it was c losest to. This 
decision was then used together with the system state 
and the input to operate the system for one stage , 
placing it in a new state at the next stage. The input 
used in the actual operation was stored. The above 
procedure was then repeated for the second stage , the 
third stage , etc. When the system reached the 
117th stage , a 4 stage optimization was used; at the 
!18th stage , a 3 stage optimization was used, et c. The 
sequence of inputs used in the actual operat ion were 
stored for use in a later comparison with ISO. This 
entire application of ASO was repeated for nine· more 
input realizations. Thus, the ASO was applied to 10 
different input r ealizat ions with i t s ROHAES = 5. The 
t otal benefit obtained from the resulting sequence of 
decisions was calculated and appears in Table 8, 
column 3, for al l 10 input r ealizations. As a compara­
t ive study, the ASO was also applied to 14 more input 
realizations wi th its RO!IAES s 1. The total be·nefi t 
obtained from the resulting sequence of decis ions was 
calculated and appears in Table 9, column 3 for all 
14 input realizations. 

Of the 24 input realization~ that were randomly 
generated, the ASO was not used exactly thc snm.e way 
f or a ll of them. For 12 of the input realizations, the 
ASO was applied as described above , us in£ LO swnpZ,; 
points to choose the "most probal.>lc" decision nt each 
stage. For the othcr 12 input r ealizations , tht• ASO 
was applied as described above, cxcept that .w l:!ll•q, f •· 
points were generated at each sta!:" fur tl\(' clH>J c" of 
the "most probable" dcci sion at c:tch stage·. Tlw input 
reallzations are marked in column I of Tabl e~ II :111.1 !l 
as to which variation of the ASO t echniqut· wa!l U!l<'d on 
them. 

AppZication of lSO - The input mode I of l:oJ. 3 I 
was used to generate 30 input rea li zation~ ovt''' tht· 
ent ire 120 stage operati on hori zon. Th~· 120 s till! '' 
optimization was performed for er~ch of thcs~· n·:• I i za 
tions and the entire opt imum decision Sl'tJUt•nn· wa ~ 



TABLE 8 
CO~fPARISON OF RESULTS BETWEEN DETERMINISTIC OPTIMIZA­
TION, APPLICATION OF ASO (RO~~ES = 5) AND APPLICATION 

OF ISO FOR SEVERAL REALIZATIONS 

Input True ASO ISO 
Ti me Optimum 

Series 
Number 
Sample 
Poin:ts 

I 
{30} 

2 
{!0) 

3 
(10) 

4 
(10) 

5 
(30) 

6 
(30) 

7 
(30) 

8 
(10) 

9 
(10) 

10 
(10) 

46602 
1.000 

50952 
!. 000 

48078 
1.000 

53455 
1.000 

45524 
1.000 

46896 
1. 000 

4M21 
1. 000 

47578 
1.000 

50542 
1. 000 

50493 
1.000 

Eq. 39 Eq. ~0 Eq. 41 Eq. 42 Eq. 43 

~lean Square Error 
8.0334 8.0088 5.8299 5.3002 5.8669 

45066 40306 
0.967 0 . 865 

49763 45520 
0.977 0.893 

46379 41446 
0.965 0 . 862 

51204 46335 
0 . 958 0.867 

44348 39668 
0.974 0.871 

45750 40875 
0 .976 0.872 

44687 39886 
0.972 0.367 

46654 41529 
o. 981 0. 873 

49080 44369 
0.971 0.878 

48322 43155 
0. 957 o.sss 

404SS 
0.868 

45722 
0.897 

41622 
0 . 866 

46652 
0.873 

40037 
0.879 

4 1196 
0.878 

40019 
0.870 

41928 
0. 881 

44991 
0.890 

43487 
0. 861 

42192 
0.905 

46992 
0 . 922 

43368 
0.902 

48250 
0.903 

41468 
o. 911 

43025 
0.917 

41691 
0.906 

43575 
0.916 

45963 
o. 909 

45412 
0. &99 

42~8 1 

0 . 912 

47292 
0. 928 

441 i4 
0.919 

4844~ 

0.906 

42190 
0.927 

43667 
0.931 

42314 
0.919 

44:10 
0.929 

46362 
0.917 

45752 
0.906 

41397* 
o.ssa·~ 

46116 
o. 905 

43293 
0.900 

46403 
0.868 

40941 
0.899 

42434 
0.905 

40939 
0.890 

42918 
0.902 

44791 
0.836 

4~120 

0.874 

•Tot~.l Benefit; • •Relative Total Benefit 

TABLE 9 
C~IPARISON OF RESULTS BETI~EEN DETERmNISTIC OPTI~IIZA­
TION, APPLICATION OF ASO (ROHAES = 1) AND APPLICATION 

OF ISO FOR SEVeRAL REALIZATIONS 

Input True ASO ISO 
Time Optimum Eq. 39 Eq. 40 Eq. 41 Eq. 42 Eq . 43 

Series 
1\u"'ocr ~lean Ssuare Error 
Sample 8.0334 8. 0088 5 . 8299 5.3002 5.5669 
Points 

11 46090 36747 39671 39958 41777 42736 41022* 
(10) 1.000 o. 797 0.861 0. 867 0.906 0.927 0.890·· 

12 SJ701 42263 44789 4498C 46803 47084 46027 
(10) 1 . 000 0.834 0.883 0 . 887 0.923 0.929 0. 908 

13 49185 
(10') 1. 000 

14 
(10') 

15 
(10) 

47684 
1.000 

48329 
1. 000 

16 47624 
(10) 1.000 

17 45540 
(30) 1.000 

18 48218 
(30) 1. 000 

1~ 47844 
(30) 1. 000 

20 46948 
(30) 1. 000 

21 50094 
(30) 1.000 

22 51256 
(30) 1. 000 

23. 49948 
(3()) 1. 000 

24 49830 
(30) 1. 000 

39713 42850 43249 45093 45855 4J188 
0.807 0.871 0 . 879 0.917 0.932 0 . 898 

37660 41202 
0 . 790 o. 864 

39182 43040 
o.sa 0.891 

41623 
0.873 

43294 
0.896 

43658 
0.916 

44379 
0 . 918 

44334 
0.930 

44848 
0.928 

J3604 
0.914 

43147 
0.893 

38408 41768 42108 43487 4~315 4~856 
0.806 0.877 0 . 884 0 . 913 0.931 0.900 

35510 39199 39450 41386 42406 4C855 
0.780 0 . 861 0.866 0.90~ 0.931 0.897 

39050 43103 43317 44193 44998 43385 
o.810 o.:94 o.89S 0.917 o.933 o.9oo 
38156 42235 42416 43799 44943 43.\55 
0.798 0.833 01887 0.915 0.939 0.908 

36743 40602 40959 4~775 43335 41964 
0.783 0 . 865 0.872 0 . 911 0.923 0.894 

41592 44247 44504 
0.830 0.883 0.888 

42697 45415 45483 
0.833 0.886 0.887 

41034 43948 44122 
0.822 0 . 880 0.883 

40089 42507 42709 
0.805 0.853 0.857 

46121 
0 .921 

46315 
0.904 

4568::! 
0.915 

4HSO 
0.898 

46781 
0.934 

46$58 
C.914 

41:218 
0 .925 

45146 
0 .906 

45154 
0.901 

4511 4 
0.880 

43877 
0.878 

439~2 

0.882 

•Total Benefit , ••Relative Total Benefit 
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stored. Each c.Jecis ion sequence 143S t hen used to operate 
the reservoir for each of the respective input reali za­
t ions and the resulting state variable sequences were 
st ored. Thus , there were 30 , 1.20 stage time series 
real i:ations of i nputs, optimum decisions, states anJ 
month designations available for the mult ivariate 
analysis. Since the nonstationarity of the inputs and 
the benefit function 1o1as limited to variat i on over only 
12 months (i.e ., t he char act eri stics of t he inputs and 
the form of the benef it function repeat every 1.2 months) , 
the generated "data" may be regarded as 300 values of 
input, st orage and optimum decisions for each month of 
operation . 

Performi ng the multi variate analysis required 
determining the variables of importance, the functional 
relationship and the method of estimation of parameters 
in tho relationship. Any comparison of results bet1;cen 
ISO and ASO is heavily dependent upon the above selec­
t ions . The select ion of variables , funct iona l f orm and 
par ameter estimations was limited in compl exity to t he 
degree normally used in practice (40,48) . Least squares 
regression analysis was se lected as the multivari ate 
analysis technique . Av~i lable to the writer was t he 
Bureau of Reala;nation, BI1DX85?., nonlinear least sq;cares 
regression anal;Jsis aornputer prog:r>am as r·.:wiseci oy the 
C. S . IJ. St at istics lab ill J une, Z9?0. The sel ec: t ion of 
t he significant variables was more difficult . Since 
t he i nput time serit's 1,·as r epresented by a ~!arkov model 
of order one , only t he one previous iltf low 1-13 s con­
sidered important in determining the decisi on at a 
stage . The relationship was also judged to be depen ­
dent upon the month of<lpcration since there 1vere peri­
odicities over the year in the mean, standard deviation 
and correlation coeffi cients of the input t i me ser i es 
and periodicities over the year i n the benefit func­
tion. The rel ationship was also j udged to be a func ­
tion of .the st ate of the reservoir . Thus, the fol l01;­
ing equation 1~as used i11 the multivariate analys i s : 

(33) 

In Eq. 33, j i s the month of the year corr esponding 
to stage i. 

The se l ect ion of the ;lppropriate functional re­
lationship for usc in Eq . 33 was the most difficult . 
Instead of selecting only one relat ionship, several 
v.•cre used: 

d. 
]. 

d. 
]. 

pl + p.2 5 i + 

p3 
P1 • p2si 

p3Ii- l + 

Ps 
+ P4 1i-l 

(34) 

(35) 

(37) 

(38) 

In Eqs . 34 through 38 , the p s igni fies parameters to 
be estimated in the multivariate analysis . The selec­
tion of the above functions was not made i ndependent ly 
oftheregression ana lysis . First Eq. 34 was used , t hen 
Eq. 35. The analysis indicated that all of the expo­
nents i n Eq . 35 were very close to unity and so the 
exponents 1;eTe dropped for subsequent analysis. The 
periodicities mentioned above prompted the cyclical 



representations in Eq! . 36, 37 and 38. In Eq. 37, 
smaller cycles (harmonics) were added but t he improve­
ment (as represented by the mean square error of the 
residuals) was small. In Eq. 38, the periodicity was 
i ntroduced into the other variables with l itt le im­
provement. Of the five equations above, Eq. 37 gave 
the best representation as shown in Tables 8 and 9 . 
The least squares regression results for Eqs. 34 through 
38 are respectively: 

di = 0.010811 + 0.21223si + 0.46711Ii-l 0.039786j 

(39) 

<1 . -0 .037336 + 0.19900s~· 0172 
+ 0 48_(_1°· 98673 l l . .;) ).;) i - 1 

- 0.0008237lj 2· 0942 
(40) 

di 1.6462 + 0.13527si + 0.24707li-l 

0 ? (
2l1; . 

- 3 . 14- cos lfJ ( 41) 

di. 1.9707 + O. l2776s. 
l + 0.19310Ii-l 

- 3. 3292 cos cztb + 0.57219 cos (41Tf1) 

- 0.070249 cos (~) 
12 + 0. 91303 cos (~) 12 (42) 

d. 
l 

2 . 
3. 2871 - (1 .1 288 + O.l904si + 0. 22563Ii _1) cos Ctr) 

( 43) 

C0~1PARISON OF RESULTS 

For every actual i nput r eali:ation that ASO was 
applied to, · the results of the ISO were "lllso applied 
and the resulting total benefit ;.•as calculated. The 
decision, at each stage of each reali zation, resul t i ng 
from the function used in each case (Eqs. 39 through 
43) was checked to see that it was f easible and if not, 
it was changed t o equa l the feasible limit it was 
closest to. Therefore, since this procedure is common 
to both ASO and ISO as applied here, this procedure 
does not bias the results in comparison of ASO with 
ISO. The 120 st age optimization was also applied to 
each of the realizations t o determine the true maximum 
total benefit. The results of all optimizations are 
presented in Tables 8 and 9 for ease in comparison. It 
can be seen from inspection of Table 8 that the ASO 
yields consistentl y higher total benefits, for the 
actual input realizations considered here, compared 
with ISO and each of the relationships of Eqs . 39 
through 43. 

Several statistical tests were performed on the 
data of Tables 8 and 9 to study t he results of ASO and 
to compare ASO with ISO . Some of the following tests 
are probably extraneous to most practical appl ications 
of ASO, but were included here for information concern­
ing ASO. 

Effect of Generated SampLe Size at Eaah Stage in 
ASO - The first statistical t est was made to see if 
there was any significant difference in the ASO results 
for this problem between using 10 sampl e points or 
30 sample points at each stage to determine the most 
probable decision . For the data of Table 8 (ROHAES = 5), 
the Mann- Whitney test (5) was applied to test the 
following hypothesis: 

17 

Hl) : P[ZS,30 • aj 
120 - Pjz

5
•

10 ~ a ] ; for all a 
120 

H P(~5,30 J ~ P[_S,lO ) 1: - 120 ~ c:t r - 120 ~a ; for some a 

( 44) 

k m In Eq. 44, ZN ' is tho relative total benefit achieved 

from ASO applied over N stages with a ROHAES = k and 
using m sample points at each stage . To test the 
above hypothesis, two random samples arc taken and they 
must be mutually independent samples. For the purposes 

here, t he random variables, z~ ·m are treated as con­

tinuous. Time series numbers 1, S, 6 and 7 are used to 

t Zs · 30 
d b 2 3 9 represen 120 , an num ers , , 4, S, and 10 are 

used to represent Z~2~0 . Ranks are assigned to the 

combined sample with a rank of 1 assigned to the small­
est value. The test statistic is: 

~ 
2 (45) 

In Eq. 45, Ri (2~2~0) is the rank of observation on 

Zf 2~0 assigned from the combined sample and n is the 

size of the random sample for Z~z~O If the test 

statistic is less than the y/2 quantile or greater 
than the 1 - y/2 quantile of the distribution of T, 
then the null hypothesis is to be rejected. The val ue 
of T is 15 . For y = .002, the critical region i s 
reject h0 if T<O or T>24. Thus, H0 is accepted 

at the y = . 002 
distribution of 

l evel. In addition, inspection of the 
T indicates H

0 
is accepted at all 

1 evels in the tables down to and including y = . 20 . 
Thus , one may say that there was no significant dif­
ference in using ASO with eit her 10 or 30 samples 
points at each stage to determine the optimum operation 
of the r eservoir for thi s problem. The same test was 
applied to "the data of Table 9 (ROiiAE5 = 1) and the 
same r esults were obtained; i.e., the null hypothesis 
was accepted at all levels in the tables. For thi s 
problem then, considering more than ZO points i n the 
sample at each stage does not contribute anything more 
(or Zess) to the performance of the system operated using 
ASO. From this point on, no distinction will be made 
between 10 or 30 points in the sample at each stage for 
ASO and optimizations with the same ROHAES will be 
treated as equivalent . 

Effect of ROHAES in ASO - The second statistical 
test was made to see i f there was an incr ease in the 
probability of obtaining high tot a 1 benefits when there 
was an increase in the ROr~ES used in ASO. Recall the 
example of the previous chapter. Using the modified 
application of the optimization technique it was shown 
that an increase in the ROHAES also increased the 
probability of obtaining any desired fraction of the 
maximum total benefit in the optimization. Here, an 
analogous phenomenon is investigated . Using ASO the 
test shows that an increase in the ROHAES for ASO also 
increases the probability of obtaining an}' desired 
fraction of the maximum total bencfi t. The Smi rnov 
2- sample test for independent samples is used here 
similar to the test for 5 sampl es of the prcv iou~ 
chapter . The hypothesis is, 



H P[z5•· > o) > P[z1 •· >a) 0 120 - 120 

B1: not H
0 

(46) 

The test was performed and the null hypothesis was 
accepted at all levels, y included within the tables. 
Thus, an ~ncrease in the ROHAES (from 1 to 5) doas 
inar>ease the proba.bi Zity of obtaining any desired /Ma­
t ion of the maximum total benefit in ASO, for this 
problem. 

Comparioon of ASO with ISO - The third statistical 
test was made to see if the application of ASO gives 
higher total benefits than the application of ISO, for 
the problem considered here . The Smirnov test (5) was 
appl ied to the data of Tables 8 and 9. The first 
10 input realizations (in Table 8) were used to rep­
resent the ASO results (with the ROHAES = 5) and the 
next 10 input realizations (series 11 through 20 in 
Table 9) were used to represent the ISO results for 
each of the fitted relationships (Eqs. 39 through 43). 
The test was applied to t wo samples at a time, comparing 
ASO with ISO for each equation. Thus, the test was 
made 5 times. In all tests , the fol l owing hypothesis 
was accepted at all levels, y within the available 
tables: 

5 *t 
P(Z1io > a) > P[z120 > a]; t • 39, .. . , 43 (47) 

•t 
In Eq. 47, ZN is the relative total benefit obtained 

from an N stage operation using ISO and Eq. t. Thus, 
the obsel'!Jation that the ASO results (for a ROHAES • 5) 
were consistently higher than the ISO results has been 
substantiated in general by the above tests. 

The total costs of the computer for this problem 
if only one input realization was used (instead of 24) 
and if the ASO with a ROI~ES ~ 5 and 10 sample points 
at each stage were used, are as follows. Altogether, 
the ASO (including preliminary studies t o test for con­
ver gence in the optimization technique) cost about $25. 
Of this, $8. 75 was the cost of the actual application 
of ASO for a single input realization which resul ted 
from a required computer storage/computer time of 21700 
octal/100 seconds. The ISO (inc luding all of the 
studies of functions with least squares regression) 
cost about $ZZ5. This cost included a computer storage/ 
computer time of 61100 octal/1038 seconds for the 
&~DXSSR program and 25000 octal/71 seconds for the ISO 
data generation with data storage on punched cards. 
The cost of applying the ISO results (Eqs. 39 through 
43) was negligible. 

DISCUSSION 

Costs - The above figures may serve to give a 
rough indication of relative expenses. For a single 
i nput realization, ASO is c learly more economical . 
However, the application of ASO in design , where many 
input realizations need to be analyzed, would reverse 
this picture . As mentioned above, the cost of applying 
ASO here was about $8.75 per unit realization and the 
cost of applying the results of ISO was negligible for 
each realization. If a large number of input realiza­
tions were to be analyzed in design, then ISO is clearly 
cheaper . Thus, perhaps the greatest application of ASO 
would be in practice, for an existing system with only 
one input realization to contend with. 

Of course ISO might do better in the operation of 
the system if a better choice of variables and func­
tional form are selected to estimate the decision at 
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each stage. The results of this study only apply for 
the functions actually used in ISO. Ever y effort was 
made to be reasonable in the selection of the funct ions 
and variables used in the r egression. The high relative 
total benefit obtained with the use of some of t.le ISO 
functions indicates that they were not poor choices. 

Application of ESO - When considering the vnious 
ESO techniques as applied to this problem, it becomes 
obvious that ESO cannot be applied without considerable 
problem reduction and/or alternate problem representa­
tion. For example if the ESO technique , as propo~ed 
by ~tanne (29) was used on this problem, then all prob­
abilities of making decision d with an inflow I, a 
state s, at stage i, would have to be found. For 
this problem, there are 51 possible decisions, 26 pos­
sible states and inflows and 120 stages. The number of 
variables to solve for would then be 5lx26x26xl20 
= 4,137,120 variables. Of course, this numberwouldbe 
greatly reduced by the feasibility constraints that 
would be imposed on the problem. Even so, the number 
indicates that the degree of complexity is gr eat. In 
l ieu of making simplifying assumptions, this problem 
cannot practically be worked with this method . Other 
ESO techniques could be used which would solve for 
decisions on a stage by stage basis . llowever, all ESO 
techniques require the probabi l ity distribution for 
inflows at each s tage. Thus, . an alternate problem 
r epresentation would be necessary for the appl ication 
of any ESO technique. Furt hermore , there is no assurance 
of achieving the maximum total benefit, only the max­
imum expected total benefit. 

One large restriction with most applications of 
ESO is that the variables in the problem are represented 
by a small number of di screte values. With ASO, this 
restrict ion is lifted and computer storage that would 
be reserved for the optimization in ESO is now available 
for system representation with many discrete values in 
ASO. 

CompZez Systems - If the problem as stated was a 
.little different, then applications of ESO and ISO are 
not at all f eas ible. The problem was selected so that 
ISO could be applied in addition to ASO without e,.;ceed­
ing computation feasibility requirements determined by 
available funds. However, if the input time series 
nonstationarity extended over the entire operation 
horizon (instead of only periodicities over the year) 
then ISO would require analysis of each of the 
120 months. Thus , enough input realizations would have 
to be generated and optimizations performed so that 
"enough" data points for each of the 120 months are 
obtained . For example, if 300 data points for each 
month were desired (as in the above probl em), then 300 
(120) stage input realizations would be needed for the 
optimizations. Thus, for this problem, the data genera­
tion of inputs, optimum decisions, states and month 
designations would require 10 times the computer time 
as above. In addition, the multivariate analysis would 
require a computer storage that would be infeasible. 
llowever, the requirements and execution of ASO would 
not change one iota. Similarly, if the operation hori­
zon was 50 years instead of 10 years and nonstationari ty 
over the entire operation horizon were present i n the 
input time series, then ISO computer requirements would 
increase proportionally, whereas ASO would only consume 
5 times the amount of computer time. 

Finally neither conventional ESO techniques nor 
ISO techniques could handle this problem if new infor­
mation (availabie at each stage of operation) were to 
be used in the problem. However, ASO is adaptive and 
since the stochastic optimization proceeds one stage at 
a time, new information available at each stage can be 
utilized in the model s. 



CHAPTER IV 

MODIFIED OPTIMIZATION VARIATIONS 

The purpose of this chapter is t o i llustrate how 
wel l the techniques perform by l ooking at vari ations 
in t he single reser voir problem. The modified appl ica­
tion of the optimization technique, as described in 
Chapter I I , was applied to eleven variations of the 
reservoir problem. These vari ations are described in 
detail below. The ASO was not applied, since it would 
have involved l engthy computation and since it was 
fel t that the fol lowing results are r epr esentative of 
ASO performance . 

As an indicator of how "well" the modified appli­
cation of the optimization techniques performs , the 
average relat ive total benefi t is used . By compari ng 
different values of this measure, the relative effect 
on the optimization results can be assessed for changes 
in t he problem. The probl em was varied by changing the 
annual mean of the inflows and the annual standard 
deviation in the data generation. Furthermore, the 
shape and location of the benef it funct ion wer e changed. 
The resul ts of all optimizations are plot ted and sig­
nificant trends are not ed and discussed. The probable 
implications for future problem variations are also 
discussed. The studies of this chapter ar e offered not 
as an exhaustive defini t ion of al l problem changes , 
but as an indication of suitability of the methods for 
typical single reservoir problems. 

APPLICATION 

The system used i n the fo l lowi ng studies is the 
same s ingl e reservoir model described in Chapter II . 
The inflow time series is again represented by the 
first order Mar kov model with periodicities over the 
year (12 months) i n the mean , standard deviation and 
first order correlat ion coeffici ent s; see Eq . 31. The 
system performance is again measured by a simple bene­
fit funct ion, as was done i n Tab l e 3, with no weight s 
applied to it each month. 

As befor e , the i nitial state i s set at s = 10, 
but the operation hori zon is now set at SO mont hs 
instead of 120 months , to r educe computations. There 
is no salvage value assigned to the system and no end 
condition on storage i n the r eservoir. The determin­
istic optimization technique used i s dynamic program­
ming. 

The modified application of the optimization 
technique was made to the systems operation for each 
of eZeven sets of system parameters. The f irst set 
included the monthly means and monthly standard devia­
t i ons of Table 1 which are plotted as broken-line 
curves "A" in Figs. 6 and 7 respectively. The first set 
of parameters also i ncluded the benefit function of 
Table 10 of "normal " shape with its maximum at d = 15. 
For convenience of notation this i s referred to as 
shape one , l ocation 15 and this i s plotted as the 
broken-line curve in Fig. 8. The other sets of system 
parameter s which were used are described in Table ll 
wi th ref er ence made to Figs . 6, 7 and 8. For each set , 
the new application of the optimization technique with 
a ROHAES = 5 was applied to 30 randomly generat ed i nput 
t ime series. Thus, 330 input t i me series were analyzed 
altogether. For each series , the actual total benefit 
was calculat ed and divided by t he true maximum total 
benefit. 
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TABLE: 10 

BENEFIT, b. 
1 

FOR DECISION, d. 
1 

DECISION 0 2 3 4 5 6 7 8 9 i o 
BENEFIT 262 350 386 424 450 506 550 586 600 620 664 

DECISION 11 12 13 14 15 16 17 18 19 20 21 
BENEFIT 694 702 714 722 724 720 714 698 676 662 644 

DECISION 22 23 24 25 26 27 28 29 30 31 32 
BENEFIT 616 600 574 540 526 500 478 460 414 382 350 

DECISION 33 34 35 36 37 38 39 40 41 42 43 
BENEF IT 314 246 182 150 132 116 100 92 86 78 70 

DECISION 44 45 46 47 48 49 so 
BENEFIT 64 56 48 40 32 24 16 
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The ordered values of t he r~lativ~ t otal bonef.it 
for all optimizations are present cd in Tab ll· I :? . Till' 
mean relative total benefit and the stand~1nl deviation 
of the mean wer e calculated for cao..:h Sl't ami appl':t r ;l t 

the bottom of Tabl e 12. The mean values ar~ approxi ­
mately normal l y distributeJ (hy t hl' C<•ntnll Limi t 
Theorem) and so two standard dcv i ;It ions , Cl·nt cn·d on 
the mean represent roughly a 70 percent o..:onf ldt·nn· 
inter val. The mean values :!"one standard dt'V Illt ion urc 
plotted in Figs. 9, 10, 11, and 1:? fot· ~~onvcnicnn· . Tla· 
standard deviat ion may thus be interpreted us a :nwasur<· 
of estimation error. 



SHAPE TWO 

.. 
FIG . 8 . THE BENEFIT FUNCTION, 3 LOCATIONS, 

2 SHAPES . 

TABLE ll 

DESCRIPTION OF DATA SETS USED IN PROBLEN OPTU1IZATIONS 

Set ~1ean Standard Deviation Benefit Function 
Number Series Seri es Shape Location 

1 A 
2 1/3 A 
3 2/3 A 
4 A 
5 1/3 A 
6 2/3 A 
7 A 
8 A 
9 A 

10 A 
11 A 

1.0000 
&: 

~ ! -tA 
::1 0.99~ 

~ e 
~ 
!;( 

0.99SO 

i 0.9925 
z • 
~ 

0.9900 
0..5 

A 
A 
A 

1/2 A 
1/2 A 
1/2 A 

A 
A 
A 
A 
A 

one 
one 
one 
one 
one 
one 
one 
one 
two 
two 
two 

STAN DAIID DEVIATION, A 

I , f. SHAPE ONE 

1. F. lOCATION 15 

1.0 1.5 2.0 

ANNUAL MEAN FlOW 
IESERYOII CAPACITY RATIO 

15 
15 
15 
15 
15 
15 
10 
5 

15 
10 
5 

2.5 

FIG. 9 . EFFECT OF CHANGING THE INFLOW MEAN, CURVE 1. 
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TABLE 12 

ORDERED VALUES OF RELATIVE TOTAL BENEF IT 

Data Sl!t Nos. 

Plott i na 
Posit ion 

.0333 

.0667 

. 1000 

.1333 
.1667 
. 2000 
• 2333 
.2667 
. 3000 
.3333 
.3667 
. 4000 
.4133 
. 4661 
.sooo 
.S333 
. 5667 
. 6000 
.6333 
.6667 
. 7000 
. 7333 
. :'66? 
.8000 
.8333 
.8667 
.9000 
.9333 
. 9667 
1.000 

6 1~ 11 

.9964 .9978 .9973 .9968 .9985 .9974 .9934 .9989 .9677 . 9755 .9891 

.9968 .9979 .9973 .9973 .9985 .9976 .9937 .9990 .9679 .9826 .9911 
' 9968 . 99?9 . 9977 • 9973 • 9986 • 9978 . 9942 . 9995 . 9695 '9837 . 9917 
.9969 . 9981 .9977 .9974 . 9986 .9978 .9949 .9996 .9706 .9843 .9919 
.9969 .9981 .9977 .9974 .9988 .9980 .9956 .9996 .9711 .9847 .9929 
.99?0 .9981 .9981 .9975 .9989 .9980 .99S6 .999? .9714 .9$68 . . 9933 
.997o .9982 .9981 .99?5 .9989 .9981 .9957 .9997 .nl? .9~79 .9933 
.9971 .9983 .9981 .9975 .9990 . 9981 .9958 .9997 .9?22 . 9S87 .9942 
.9971 .9983 .9982 . 9976 .9991 . 9982 .9960 .9998 .9731 .9S87 .9943 
.9972 .9985 .9983 . 9976 .9991 .9982 . 9960 .9998 .9747 .9&88 . 9944 
. 9977 • 9985 . 9983 . 9~76 • 9991 • 99SZ • 9960 , 9998 • 9773 . 98.90 • 9945 
' 9977 .9985 • 9983 . 9976 . 9992 . 9~83 . 9961 ' 9998 . 9789 '9~06 '9948 
.9977 . 9986 . 9983 .9977 .9992 .9983 .9964 .9998 .9797 .9913 .9950 
. 9977 . 9986 -~984 .9978 . 9993 .9983 . 9965 .9999 . 9798 .99,15 .9954 
.9978 .9988 .9984 .9978 .9993 .9983 .9966 .9999 .9800 .99'19 .9955 
. 99?8 . 9988 '9984 • 9978 '9993 . 9984 • 9975 • 9999 • 9801 • 99'24 • 9963 
. 9978 .9988 . 9984 .9979 .9993 .9984 . 9975 .9999 .9810 .9~25 .9967 
.99?9 .9989 .9985 .9979 .9993 .9986 .9976 .9999 . 9816 .9931 .9973 
.9980 .9989 .9985 .9979 .9993 .9986 .9977 1.000 .98~1 .99-31 .9975 
.9980 .9989 .9985 .9980 .9994 .9986 .9977 I .000 .9829 .9(;35 .9978 
.9981 .99n .ss~? .99M .999~ .998? . 9980 1.ooo .9834 .9~40 .9980 
. 9981 .9993 .9987 .9981 .9996 .9%7 .9980 1.000 .9836 .9 .. ,2 .9983 
.9981 .9993 .9987 .9983 .9997 .9987 .9980 1.000 .9&45 .9943 .9983 
.9982 . 9994 .9987 .998,, .9997 ,9988 .9982 1.000 .98$0 .9967 .9986 
. 9983 . 9996 '9989 • 9983 • 9997 • 9988 • 9984 1. 000 . 9855 • 9912 • 9986 
. 9983 . 999G . 9990 . 9983 1. 000 , 9988 , 9984 1. 000 , 9862 . 9972 . 9992 
. 99Sl . 9996 . 9990 . 9983 LOOO .9990 .9984 1.000 .9864 .9973 .9917 
.9984 .9996 .999:! .998.3 1.000 . 9Sl91 .9989 1.000 .9866 .99'73 . 9977 
.~985 .9997 . 9993 .9981 1.000 .9~~1 . 999S 1.000 .9872 .9~76 1.000 
. 99SS I. 000 . 999l . 9987 1. 000 , 9993 , 9996 I. 000 , 99l2 . 9~98 I. 000 

Meon • 9977 . 9988 . 9984 . 9978 , 9993 • 9984 , 9969 . 9998 , 9792 , 9~1 3 • 99S9 
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DISCUSSION 

All of the relative total benefits calculated in 
Table 12 are high, i ndicating that the optimization 
technique did well in al l cases . Closer inspec~ion 
reveals that there are several interesting trends which 
appear significant. 
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As the annual mean or annual mean/reservoir 
capaci ty ratio decreases, by using each of the t hree 
sets of values in Fig . 2 with other things constant, 
the mean relative total benef it appears to increase 
slightl y; see Fig. 9. The ratio values wer e picked to 
be 2 .046, 1. 364 and 0.682 indicating that the technique 
~~orks well in a range of ratio values and slightly 
better for small values. This study was repeat ed for 
a standard deviation series set at half of the pr evious; 
see Fig. 7. In Fig. 10, t he same qualitative results 
wer e obtained. I t appear s that i n general, the modi ­
fied application works better when there is less varia­
tion in t he input time series and possibly when the mean 
inflow is small. 

The average monthly mean/reservoir capacity ratio 
i s obtained from the annual mean/reservoir capacity 
ratio by dividing by 12. Thus, the average monthly 
mean/reservoir capacity ratios corresponding to the 
annual mean/ reservoir capacity ratios l isted in Fig . 6 
are respectively: 0. 1705, 0.1137 and 0.0568 . The 
benefit f unction of shape one, l ocation 15 was used f or 
all r esults appearing in Fi gs . 9 and 10. The location 
of 15 corresponds to a rel at ive release (di divided by 

reservoir capacity) of 0 . 600 . Thus, it may be that in 
addition to variations of inflows, the discrepancy 
between the average in flo~>• and maximum benefit location 
al so affects the efficiency of t he technique . Perhaps 
then, the closer t he average i nf l ow is to the peak 
location of the benefit function , ~he better is the 
modified application . This cannot be deduced from 
these pl ots but the effect seems to appear again later. 

As the location of the benefit function decreases, 
the mean r elative total benefit appeared to increase. 
This was true for both the shape one and shape two 
(Fig . 8) benefit function. In Fig. 11 , a simple curve 
cou!ld not be drawn through the points because of esti­
mation errors but in both Figs. 11 and 12, t he maximum 
mean relative total benefit occurred for the smallest 
location value. The shape of the benefit function 
appears to have a marked influence on the results. 
For the "narrower" shape in Fig. 8, the mean relative 
total benefits are consistently poorer than those 
achieved using t he "wider" shape . Alt:hough this seems 
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reasonable, it .is evident that t ht• modified application 
stil l yields high values f or the mean r elative total 
benefit (greater ttwn 0. 95 i n a l l cases studied) with 
a ROI-IAES equal to 5 stages. 

It is i nteresti ug to .note again that t he results 
of Figs . 11 and 12 can also be interpreted as before . 
The mont hly mean ser.ics A and mont hly standard devia ­
tion series A were used for a I I resul ts appearing in 
Figs . ll and .1 2. Thus, the average monthly mean/reser­
voir capacity ratio was 0.1705 in all cases. As the 
relative release approaches this value (0 . 6, 0.4 and 0 . 2) 
in both Figs . 11 and 12 , the mean relative total bene­
fit increases markedly. It appears then that smaller 
discrepancies between mean inflow and benefit peak 
location yield better results for the modified applica­
tion. 

Furthermore, the benefit peak location may be 
interpreted as a contract l evel. The failure to meet 
this contract level decreases the benefits ; thus the 
peak of the benef i t function fal l s at the contract 
level. The maximum benefit over the operat ion hor izon 
is realized when the contract l evel approaches t he mean 
inflow as has been shown by others (47) and which can 
be seen from inspection of Table 13. Table 13 contains 
the unordered values of the maximum total benefit 
(obtained by conventional dynamic programming) which 
corresponds to the l ast three columns in Table 12 . 

TABLE 13 

UNORDERED VALUES OF MAXIHU~I TOTAL BENEFIT 
Data Set No . 9 10 11 

13078 231 18 35900 
11 258 22424 35386 
13772 22928 35218 
10672 23400 35430 
11520 23978 35222 
12322 21460 35568 
13514 23084 35132 
12584 24732 35374 
11952 22768 35952 
11582 20252 35890 
13556 23436 35330 
10410 24292 36010 
12584 24846 35770 
10610 21588 35480 
14126 22944 35730 
10826 21512 35572 
14574 20332 35510 
11366 24430 35772 
14342 21668 35760 
11582 23114 35712 
10780 211 14 35920 
10718 23906 34886 
12168 24420 35230 
10502 23948 35620 
13278 23848 35632 
12214 25582 35630 
11890 23740 35600 
11690 21276 35522 
12106 22456 35610 
11798 23018 35292 

Mean 12112 22987 35555 
Benefit Location 15 10 5 
~Relative Release~ (. 6~ (. 4~ (. 2) 

Therefore, i t seems handy that the best performanae of 
the modified appLiaation appears to oaaur at or near 
the optimum aontraat level (in relation to the inflow 
mean). 



CHAPTER V 

SUGGESTIONS, COMMENTS AND CONCLUS IONS 

The purpose of this chapter is to present a few 
i deas for further research and to make a few comments 
on the ideas in this study that have not already been 
made. 

Suggestions fo:r Fu:rthe:r Study - In the development 
of ASO and i n the problem application of ASO, in 
Chapter III, the decision at each stage was selected 
as the "most probable" from a small sample . Depending 
upon the problem at hand, this may not be t he best 
deci sion to'use. Vari9us weighted averages obtained 
from the sample may be better . A topic for further 
research would be the investigation of various selection 
rules . 

In the problem application of ASO presented here, 
a sample size of 10 was used at each st age of the 
operation/optimization. Future research might investi­
gate the effect of the sample size in conjunction with 
various sel ection rules for given problems. 

The application of ASO presented here was made to 
a fairly simple problem so that ISO could also be 
applied for comparison . Future research might consider 
the application of ASO to much more complex systems 
involving both multivariate states and multivariate 
decisions. 

In the generation of a sample of optimum one stage 
decisions at each stage in ASO, the effect is to fore ­
cast the optimum decisions to use directly, and not 
just forecast inputs. As more stages into the future 
are considered to find the sample points, t he probabil­
ity of achieving the optimum decision increases . 
llowever, the reliabi l ity of forecast may be decl ining. 
ASO and the modified application of optimization tech­
niques might be used in future research to investigate 
the balance between forecast reliability and the prob­
ability of obtaining the optimum (or suboptimum) 
operation for various systems . 

It was found i n st udies not inc luded her e , that 
both the modified application of optimization techniques 
(Chapter II) and ASO (Chapter III) gave total benefits 
consistently closer to the true optimum for increasing 
values of the ROHAES. This was illustrated for the 
modified application of optimization techniques in 
Fig. l and for ASO in the test of Eq. 46. Theref ore, 
both techniques can be made as close to optimum as 
could be desired by incr easing the ROHAES . However , 
computation costs also increase with an increasing 
ROHAES and the value of the ROHAES must be chosen to 
satisfy some criterion of acceptance . Such a crit erion 
might be as follows. From preliminary studies, esti­
mates of the total benefit obtainable with either 
technique (depending upon the situation) can be deter­
mined as a function of t he ROiiAES . For increasing k, 
the point where the increase in computation costs 
exceeds the i ncr ease in total benefit obtained gives 
that value of k for the ROHAES where further increases 
do not increase net returns. There are certainly other 
crit eria for sel ecting t he ROHAES which may prove 
superior and worthwhile of investigation. 

General Comments - The framework for considering 
optimhation probl ems and stochastic optimization prob­
lems, as presented in Chapters II and III, seems to be 
a good way of considering methodologies . It is suggested 
her e, that the framework might have use i n the future 

• when further research is made into both deterministic 
and stochastic optimization methodologies. 
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As mentioned in Chapter II , the operation of a 
system in pract ice often extends past the original 
design period. Instead of scrapping the system, opera­
tion continues after the end of the design horizon. In 
the past, to f i nd the optimum operation for a s ystem , 
a. fixed operat ion horizon had to be considered. By 
using either the new application of optimization tech­
niques or ASO, operation may proceed indefinitely whiLe 
operating '~ear> optimum. Thus , the design period is not 
necessary i n f i nding optimum operation. 

The advantage of either methodology, over exist i.ng 
techniques, of adaptability was not illustrated in any 
of the applicat ions presented herein. This advantage 
enables the engineer to incor porate new information 
on the system, its inputs , its environment , etc . i nto 
the ongoing decision process. This continued updating 
enabl es one to operate a system efficiently without 
incurring the high computation costs of repeating an 
entire earlier study (sec "adaptive alternative" in the 
schematics of Figs. 4 and 5) . 

COr.!lllents on the Modified App~ication ot Optimi:mtion 
?echniques - The degree of suboptimum performance 
obtained through the use of the modified application 
has been expressed as the ratio of the total benefit 
obtained in the k stage optimi~ation to the maximum 
total benefit obtai ned from the :-.1 stage opt imization. 
For purposes of design and actual operatiou, r esults 
could be expressed in another way. Suboptimum perfor­
mance could be measured strictly by the probability of 
obtaining a desired fixed level of total benefits as 
has been done with the use of ISO in the past (15). 

The modified application of the optimizat ion 
techni que may also be incorporated i nto ESQ. For 
example, the maximization of t he expected total benefit 
for the system may result in a set of equations which 
need to be solved for the optimum sequence . By con­
sidering only a few stages at a time in~tead of the 
entire operation horizon, the dimensions of the set of 
equations may be greatly reduced. Thus , the decision 
(or decision probabi lit ies) may be obtained, one stage 
at a time. This appl ication is similar to current 
practice, only simplifying assumptions are used to 
reduce the entire problem for a one time solution. 

Comments on A Zte:rnate Stooi-.aetic Optimization - In 
the generation of optimum one stage decisions at each 
stage in ASO, the e f fect is to forecast the optimum 
decision to use directly and not just to forecast 
inputs . Thus, ASO may be regarded as a dynamic pro­
gramming decomposition with an empirical stochastic 
optimizat ion used at each stage of t he decomposition . 

In more complex water resource problems than were 
considered here , ASO would be better than ISO in achiev­
ing results c loser to the optimum when the number of 
independent variabl es required for the decision at each 
stage is large . For example, if the input time series 
was represented by a ~larkov model of order t hree or 
t here were several input time series , then the f unc-· 
t iona! rel ationship used in the multi variate analysis 
in ISO may require a large number of variables. The 
same comment applies for an increase in dimension in 
the state variable also . Thus , reasonabl y good · results 
from ISO may be intractable. ASO does not have this 
difficulty and may be appli ed easil y to even these 
complex systems . 



Alternate stochastic optimi:ation will probabl y 
have the most application i n practice, rather than in 
design, when t he problems can be handled hy ISO also. 
In practice, there is only one set of input realizations 
to be concerned with, the ones which actually occur. 

ConcZusions - Computation requirements of optimi­
zation problems can be reduced by a modified applica­
tion of the deterministic optimi zation technique. ~1ore 
complex analysis is possible "''i thout losing significance 
of results since the computations are not reduced by 
limiting the system model s . The modified appl i cation 
of techniques is possible for decomposable systems and 
appears feasible f or systems in the water resource 
field. 

For the single reservoir problem considered here, 
very close-to- optimum results were achieved using the 
modified application. The i 11 ustrat ion of the t echnique 
indicates a method for determining the ROHAES and the 
suitability of the technique for the single reservoir 
problem. The modified application appears to have 
promi se with several different deterministic and sto­
chascic optimization techniques for reducing computa­
tion requirements. 

The field of water resource systems engineering 
has used two main types of stochastic optimization . 
Each has certain limitations which may be alleviated 
some·what with t he use of an alternate stochastic opti­
mization technique. The al t ernate is feasible because 
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of the use it muk~s of observations on optimization 
operation hori~ons . 

For the single reservoir system presented, the 
alternate stochastic optimization technique (with k=S) 
was superior to impl icit stochast i c optimization for 
the analysis performed here. The computation time and 
storage were reduced, and the performance of the system 
was judged to be better, for this alternate. Further­
more, the alternate was more suitable than explicit 
stochastic optimization techniques for this problem . 
For more complex problems, the alternate would offer 
additional advantages , over both the implicit and 
expli.cit techniques, with regard to system representa­
tion or use of complex deterministic optimization 
techniques . 

Both the modified application of optimization 
techniques and the ASO methodology were designed to be 
of use in practice for reservoir operations on existing 
systems . Existing concepts have been combined in this 
study to yield an engineering methodology that has 
practical merit and that gives good operations for 
existing systems. 

The modified application of optimization techniques 
"''aS felt to qual itatively represent ASO also and was 
used in a special study. The system parameters and 
inputs were changed systematically to observe the 
changes in the results from the technique. Indications 
are that when the mean inflow is equal to the contract 
level , the techniques perform best. This is handy , 
since this is also the point of optimum contract level. 
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APPENDIX A 
ILLUSTRATION OF OPTIMIZATION COROLLARY 

Suppose that an input matrix is specified. Instead 
of performing an optimization over the N stages of 
the project , the first stage decision is arbitrarily 
specified . This also determines the first stage benefit. 

(A-1) 

vl (dl)•ol 

(A- 2) 

Now, the second stage state vector and benefits function 
may be calculated: 

(A-3) 

v(d2;d1;a2;s1;b1;r1) • v(d2;d1;s2;s1;o1;I
1

) ~ v2(d2) 

(A-4) 

An optimization over the N-1 stages from stage 2 
through stage N is to take place using the following 
objective function: 

(A-5) 

1~e optimization is performed (to find the maximum 
value of B) and the following results are then obtained: 

(A-6) 

(A-8) 

1~e entire process (Eqs. A- 1 through A- 8) is then re­
peated for all feasible first stage decision vectors, 
d1 • d

1
• The resulting maximum total benefit function 

is de'termined: 

(A-9) 

Now, 'the first stage decision vector is selected which 
gives t he highest value of Bmax This same first 

stage optimum decision vector is obtained by the appli­
cation of the optimization technique over the project 
for N stages, given the initial state vector s 1 " s 1 , 

using the objective function: 

(A- 1 0) 

The above statements were made for an arbitrary input 
matrix and an arbitrary initial state vector. There­
fore , they are true for any input matrix and initial 
state vector. The above behavior is possible because 
of the way that the benefit function at a stage was 
defined: 
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v(d.;d. 1 ; ... ;d1;s.;s. 1; ... ;s1;b. 1;b . ?; . .. 
l l- l 1- l - 1--

(A-ll) 

The function, v{ · ) does not depend upon any decisions 
or state vectors in the future or upon any benefits or · 
inputs at present or in the future. Thus, the benefit 
function at a stage can be completely determined as a 
function of that stage's decision vector, since all of 
the required variables are known at that stage: 

The above observations can be extended further. 
any input matrjx and initial state vector, the 
i-1 stage decision vectors can be specified. An 
mizat ion i s performed over the remaining N- i+l 
using objective function: 

(A-12) 

For 
first 
opti­

stagcs 

(A-13) 

The optimization may proceed s ince the ith stage state 
vector and benefit function can be determined in terms 
of the previous decision vectors, state vectors and 
benefits. After an optimization over ~-i+l stages 
from stage i through N with the objective function 
of Eq . A-13, the following maximum total benefit i s 
obtained: 

Note that in Eq. A- 14, if the first i-1 deci sion 
vectors that were specified had been the firs t i-1 
optimum decision vectors from an N stage optimization, 
then Eq. A-14 wou l d have been: 

(A-15) 

This is also the maxlmum total benefit obtained from 
an N stage optimization. Thus, if all previous de­
cision vectors prior to a stage i were the optimum 
vectors from an N stage optimization, then an opti­
mization over the N-i+l stages from stage i through 
stage N would give the optimum decision vectors for 
s tages i through N that were also the same as those 
from the N stage optimization. Therefore, the fol ­
lowing set of decision vectors would be the same as the 
optimum decision vectors obtained in an N stage 
optimization: 

(d* ·a·*· ·d * ·d*) 1' 2•· · ··~-1' N 

(A-16) 



APPENDIX B 
REMAINDER SYSTEMS OPERATIONS 

Given that the first i-1 decision vectors arc and 
specified as (d1;d2; ... ;di_1) and the first i-1 

input vectors are specified as (I1;I2 ; ... ;I i_1), then 

the system over the remaining operation horizon can be 
treated as a separate problem. Note that: 

therefore: 

Equation B- 1 means that any feasible combL1ation of the 
f irst i-1 decision vectors together with the first 
i-1 input vectors and the initial state vector yield 
a value for the ith stage state vector which is within 
the set of allowable state vectors. This result is 
guaranteed by the definition of the system and its 
inherent behavior. For convenience of notation, the 
following s tatement represents Eq. B-1: 

Furthermore, by Eqs. A-12 and B-2, the benefit function 
at stage i is complet ely determined by the past: 

Also, the benefit functions for future stages are 
partially determined by the past: 

27 

Therefore, the optimi zation over stages i through 
N given the first i-1 input and decision vectors and 
initial state vector could be regarded as an optimiza­
tion over the N-i+l stages, from stage 1 through 
stage N- i+I , given that: 

In 

(B- 4) 

(B-5) 

• 1; ... ;N-i +l (B-6) 

B. S(bl; ... ;bi- l; bi; ... ;bN). S(bl; ... ;bN-i_,.l) 

(B-7) 

Eqs. B-4 through B-7 : 

s . 
) 

• si+j - 1 

b. 
J 

b. . 1 l+J-

D. d. . 1 
J l+J-

T. 
) 

1. . 1 l+J-
(B-8) 

All statements made previously apply to the transformed 
problem since it is the same type of problem as before. 
Therefore , the statements made previously about the 
optimum first stage decision can be applied to the ith 
stage optimum decision given the first i - 1 input and 
decision vectors . 



APPENDIX C 
NEAR OPTIMUM SOLUTIONS 

Since the total benefit obtained by any sequence 
of decision vectors is always less than or equal to the 
maximum total benefit , for any input matrix, then: 

89. _ , , (dt. dt · ·dt ·dt -1 . . 1) < N 
N- ~ 1' 2• ·· ., S-1+1' N-9.•2•·· .,dN - BN 

Therefore : 

(C-1) 

I t N 
{w BN = BN;s1 s)c {wj B~ ~ aB~;s1 s} ; all s; all t; 

O~a~l (C-2) 

This impl ies : 

(C-3) 

Note that: 

1; k N (C-4) 

and if the assumption of Eq. 16 is made: 

P[B~ E B~ J s 1 = sJ # 1; some k<N (C-5) 

then by Eq . 15: 

P[B~ • B~Js 1 =s l > P[B~" B~ J s 1 .. sj; lar ge .t ; some k; 

N>k>t ; all s (C-6) 

Therefore , by Eqs. C-3 and C-6 : 

some k; (C- 7) 

O~a~l ; N>k>t; all s 

Equation C-7 is Eq . 17 in Chapter 2 . 

APPENDIX D 
AN EXAMPLE OF MAXIMUM BENEFIT DIFFERE T FROM MAXIMUM EXPECTED BENEFIT 

The following simple reservoir system is presented 
to show that there is a difference in the two sets of 
decisions achieved by maximizing the total benefit and 
by maximizing the expected total benefit r espec tively. 
Furthermore, the example will prove by contradiction 
that ESO r esult s do not r epresent decisions which give 
the maximum t otal benefit. 

Consider a simpl e reservoir which may be empt y, 
half full or full (3 states). Inflows into the reser­
voir may be either of three values: nothing , hal f the 
capacity of the reservoir or the capacit y of t he res­
ervoir (3 values). Thus, the possibilities f or rel ease 
are: 0, ~ . 1, l~ or 2 times the capacity of the reser­
voir. The states of the sysTem are denoted as 0, 1 and 
2 respectively; the possible inflows are denoted as 
0, 1 or 2 respectively; and the possible decisions 
(releases) are denoted as 0, 1, 2, 3 or 4 respectively. 
The probability distribution of inflows at any stage 
is ~. Ia and~ for each of the possibilities respectively. 
The initial state of the system is specified as an 
empty reservoir. The benefit obtainable in each stage 
is a function of the reservoir outflow (the decision) 
and the stage. There are two stages in the operation 
horizon. The benefit function is given in Table 0-1. 
The problem is to find that set of decisions which 
maximizes the expected total benefit subject to the 
system constraints . Restating: 

maximize E[B] • }: }: L }: P v (D- 1) 
d s I j d, s ,I,j d,s,I,j 

subject to: s = 0 when j = 

0 ~ s + I - d ~ 2; al l j 

(D-2) 

(D-3) 
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0 < Pd I . ~ 1; all j; all s; all I; all d (D-4) - ,s, ,J 

}: P • P(I]; all s; all I (0-5) 
d d,s,I, l 

L Pd I 2 "' [}: Pd 
5 1 1] P (I ]; all s; all I 

d '
8

J ' u ' ' ' 

u c{d, s ,I,j = ljs; j • 2 } (D-6) 

In the ahove equations, Pd, s ,I,j is the prohahility 

of the system being i n state s , with an inflow I, and 
a release d i n stage j . Also, vd I . is the bene-

, S 1 , ) 

fit obtained from the system in state s, with an in­
flow I, and a release d in stage j. The optimiza­
tion procedur e maximizes Eq. D·l by finding values for 
the probabilities Pd I . which also satisfy the ,s , , ] 
constraint s. 

TABLE 0-1 

BENEFIT OBTAINED IN STAGE j, MAKING DECISION d 

d/j 1 2 

0 300 350 
1 400 490 
2 500 520 
3 505 530 
4 510 540 



The set of linear equati ons "'ore sol ved obtaini ng t he 
conditiona l decision probabilities from the above 
probabi 1i t ies: 

I'd . , s, I , J 
(D- 7) 

In Eq . D- 7, Pd l I . is the conditional probability 
s J 'J 

of releasing an amount d, given that the syst em is in 
state s and has an inflow I in stage j . After the 
problem was sol ved, t he resulting conditional probabil­
ities 1;cre found to represent a pure s trategy and gave 
the following table of "optimum" d ecisions . 

TABLE D-2 

"OPTHIUW' DECISION AT EACH STAGE GIVEN THE STATE AND 
THE INFLOW 

lst Stage Decision 

s/~1 ______ ~0~----~------7.2 
0 0 2 

2nd Stage Decision 

s/I 0 2 
0 a 2 
l 
2 
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The "optimum" dcci si on seque nce for each possible i nput 
real ization was dt>tcnuincd from thC' above tables and 
compared with the true optimum deci sion sequence which 
gave the maximum total hC'ncfl t for each time seri es. 
The resul t s a-rc in Table D- ~ . It can be seen from 
Tabl e 0-3 that maximi zing the expected total benefit 
does not always gi ve the same d ecisions as those 
obtained by ma.ximi zing the total benefit for each i nput 
real ization . I n fact , this exampl e ind icates that the 
probabi lity of getting the true opt imum using expl icit 
stochastic optimization is onl y 13/16 for this partic­
u l ar problem. 

TABLE D-3 

C0~1PARISON OF DECISION SEQUENCES GIVEN BY ~IAX IMIZING 

THE TOTAL BENEFIT WITH THOSE GIVEN BY MAXIMI ZING TilE 
EXPECTED TOTAL BENEFIT 

* * '*'* ** (I l, I2) P [ I
1
,I 2) (dl,d2) (dl,d2) Agree 

(0,0) l/16 (0,0) (0,0) X 
(0 ' 1) l /16 (0,1 ) (0,1) X 
(0,2) l /8 (0, 2) (0,2) X 
(1' 0) 1 / 16 (0,1) (1,0) 
(I, 1) l/16 (1 '1 ) (1 '1) X 
(l '2) l /8 (1 '2) (1 '2) X 
(2' 0) 1/8 ( 1 '1 ) (2 ,0) 
(2 ' 1 ) l / 8 (2 ' 1) (2,1) X 
(2,2) l /4 (2' 2) (2 '2) X 

* * ** ** P ( (d
1

,d2) (d1 ,d2 )) 13/16 

* wher e: d . op t imum decision at stage given by 
J maximiz ing total benefit 

** d. " optimum" decision at stage j given by 
J maximizing expect ed t ota l benefit 
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A PPENDIX E 
NOTATION 

" base benefit obtained from :syst em operat i on 
with rel ease d 

benefit obtained from system operation in 
the ith stage 

D benefit obtained from system operation in 
the ith stage for transformed problem 

= ith stage benefit value resulting from 
decision vector d. d i and ot her previous 
conditions 1 

values of bi resulting from d~ . the N-1 

stage optimization (from stage Z through 
N) results for stage i; i ~ 2 , .. . ,N 

~ value of the lth stage benefit resulting 
from an ~ stage optimization 

values of biresulting from d~, the ~-1 

stage optimization (from stage i through 
N) results for stage j; j ~ i, i " 2, ... ,N 

total benefit obtained from system opera­
tion over N stagos 

total benefit obtained from system opera­
tion over N-i+l stages for transformed 
problem 

total benefit obtained from system opera­
tion over k stages 

total benefit for modified application 
over an N stage operation hori:on using a 
ROIIAES = k 

maximum value of total benefit , B g iven 
that the initial dt~ision vector is d1 

ith order ~larkov model coefficient between 
the standardi zed values of month i-k with 
month i-k+i 

decision vector for stage i of the systems 
operation 

z ith stage decision vector from an N-i+l 
stage optimization over stages i through N 

N- j + l . . given that s1 = s and d. = d. ; O<J<l 
J ) 

value for the decision vector fo r stage i 
of the systems operation 

value for the random variable , d~ 
1 

values of d. from an N- 1 stage optimiza­
tion over stages 2 through N, given that 
s

2 
= s

2
, (bl "b

1
); i ~ 2 , ... ,N 

value for the optimum ith stage decision 
vector obtained from an N stage optimiza­
tion 
values of d. from an N-i+l s tage optimiza-

J 
tion over stages i through N, given that 
t he first i-1 decisions r esulted in t hese 
benefits: (b1 ;b2 ; ... ;bi_1); j~i; i=2, . .. ,N 
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• matrix of decision vector values for the 
first i stages 

• matrix of optimum decision vector values 
for the first i stages obtained from an ~ 
stage optimization 

" decisi on vector for stage i of the systems 
operation in the transformed problem 

1st stage decision vector from an N-i+l 
stage optimization over stages 1 through 
N-i+l of the transformed problem given 
that sl = si 

cumulative distri bution for the relative 
sk 
N maximum measure, --

81\ 
N 

• input vector for stage of the systc~s 
operation 

input vector for stage i of the systems 
operation for the transformed problem 

• maximum value allowed to the input i n a 
problem representation 

= value for the ith stage input vector, I 1 

= matrix of input vector values for the first 
i stages 

month of ycnr corresponding to st:1ge i 
{in Chapter III only) 

• number of stages in the operution hor i:on 

• output vector for stage i of the systems 
operation 

nth parameter in equation, to he estimated 
in a regression analysis (in Chapter III 
only) 

probability of system being in state s, 
with input I , and output d in stage j 

conditional probability of making decision 
d, given that the system is in state s and 
has an input I in stage j 

• rank of observation i in an ordered sample, 
with rank • 1 for the sma llest value 

= state vector for stage i of the systems 
operation 

• state vector for stage i of the systems 
operation for the transformed problem 

• value of the state vector for stage 1 of 
the systems operation 

value of the state vector for stage i of 
the systems operation 

• reservoir storage capacity 
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=space eontuinin~ ull allOkah!P ~rat r 
vectors, ";; detcrmin<ld by the constr<ti.nt 

set ttnc.l houlllbry conditions 

• general form of the bcncfi t function 

gencnl form of t he bcncfi t function for 
t he t ran~ forrne>d p1·oblern 

bencf it ohtui nl·d from syHem in ~t;tte s' 
ldth lnptlt 1 and output cJ Jn St:Jgt• .I 

" i th st:.a~:c hl•nt•fi t function regarded a!\ :1 
fun.:t i on of the i th stage decision vector 

ith stage benefi t function regurdec.l us a 
function of t he ith stage decision vector 
for the tr:Jnsformed problem 

• wei ghting coefficient f or month j to 
determin <-' hencfi t for th:H month 

rel:niv<-' t otul benefit achieved from !\SO 
appl icd over N stagt•s ~<i th a ROIIALS = I. 
and using u sampl<-' si:c at each stage = m 

• ohjc•ct ive fun ction over the N benefits 
from ever)' stage 
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ohjrrt iv~ functi on redefined over theN 
dc~isiun vect ors from every stage 

ma~nituJt• or '1\·pc 1 l'rror in an)· statisti­
cal t t·st 

functi onal notation for the random 

' 1 J" varual> l', i 

i ndcpenJent stochasti c component in t he 
ith month for the inflok 

monthl)' mean i nflo~>• for the ith month 

monthly s tandard deviation for the i t h 
mont h 

1t h order Sl'rial correlation coefficient 
bet ~>·ecn t he standar di::.ed value~ of month 
i-1. "ith month i -k•£ 

random event representi ng an entire input 
matrix 

function:~! relation for the system ~t3te 
in the ith 5tage ~ith any variable$ of 
previous stages , representing t he srstcms 
i nhercnt bchnvior 

sample ~pace containing all input matrices 
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